
Identification and estimation of average causal effects

when treatment status is ignorable within unobserved

strata

John Gardner∗

Abstract
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in which unobserved variables influence both treatment assignment and counterfactual

outcomes. Identification proceeds under the assumption that counterfactual outcomes

are independent of treatment status conditional on observed covariates and membership

in one of a finite set of latent classes. Individuals are first assigned to latent classes

according to posterior probabilities of class membership derived from a finite-mixture

model that relates a set of auxiliary variables to latent class membership. Average

causal effects are then identified by comparing outcomes among treated and untreated

individuals assigned to the same class, correcting for misclassifications arising in the

first step. The identification procedure suggests computationally attractive latent-class

matching and propensity-score reweighting estimators that obviate the need to directly

estimate the distributions of counterfactual outcomes. In Monte Carlo studies, the

resulting estimates are centered around the correct average causal effects with minimal

loss of precision compared to competing estimators that misstate those effects. I apply

the methods to estimate the effect of gang membership on violent delinquency.
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1 Introduction

Treatment effect estimators such as matching and inverse-probability weighting are popular,

at least in part, because they take a simple and intuitive approach to identifying causal ef-

fects that does not rely on restrictive functional form or distributional assumptions (Imbens

and Wooldridge, 2009; Imbens, 2014, provide excellent reviews). Despite this elegance, the

applicability of these estimators is often limited by their predication on the assumption of

selection on observables (equivalently, conditional independence, unconfoundedness, or exo-

geneity), which asserts that, conditional on a set of observed covariates, the counterfactual

outcomes that individuals would experience with and without the treatment are independent

of whether they actually received the treatment. In observational studies, there is rarely rea-

son to believe that all of the variables that are simultaneously related to both counterfactual

outcomes and the treatment decision are observed in the data, raising the possibility that

comparisons of outcomes between treated and untreated units are contaminated with bias

due to self selection, even conditional on observed covariates, and therefore do not represent

the causal effect of the treatment on outcomes.

Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith, and Todd (1998) and

Abadie (2005) develop difference-in-differences matching and propensity-score reweighting

methods that use panel variation in outcomes to relax the requirement of selection on ob-

servables. These methods identify average causal effects under a nonparametric version of

the parallel trends assumption used in traditional difference-in-differences research designs:

conditional on observed covariates, the changes in outcomes that individuals would experi-

ence absent the treatment are independent of treatment status. Under this assumption, the

bias due to selection on unobservables is the same both before and after the treatment is

made available, and can therefore be eliminated by subtracting pre-treatment differences be-

tween treated and untreated units from those same differences recorded in a post-treatment

period. In addition, Bonhomme and Sauder (2011) show that the difference-in-differences

approach can be generalized to recover the entire distribution of counterfactual outcomes.

This paper develops a different approach to identifying average causal effects when un-

observed variables affect both treatment status and counterfactual outcomes. Instead of

eliminating biases introduced by failure to condition on such unobservables, however, the

methods developed below exploit variation in observed variables in order to identify average

counterfactual outcomes and causal effects conditional on both the observed and unobserved

determinants of treatment status and counterfactual outcomes. This approach proceeds from

the assumptions that each individual belongs to one of a finite set of latent classes or un-

observed types and that treatment status is ignorable—that is, counterfactual outcomes are
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independent of treatment status and the probability of receiving the treatment is strictly

between zero and one (Rosenbaum and Rubin, 1983b)—conditional on this latent class and

a set of observed covariates.

From these assumptions, identification of average causal effects proceeds in two steps.

First, a finite-mixture model is used to recover the likelihood of a set of auxiliary dependent

variables and covariates as a sum of latent-class-specific likelihoods, weighted by the proba-

bilities of membership in each latent class. The purpose of this part of the procedure is to

impute the latent classes to which individuals belong, according to their posterior probabili-

ties of class membership (given their realizations of the observed auxiliary variables). While

the identification procedure does not require that the data have a panel dimension, the evo-

lution of observed variables over time provides a natural source of variables to be included

in the auxiliary model. For example, the first step of the procedure might consist of a model

of the history of pre-treatment-period outcomes as a function of latent class membership

and time-invariant covariates, or if the treatment decision is made repeatedly, a dynamic

discrete-choice model of the treatment decision as a function of latent class membership and

(potentially time-varying) covariates.

Second, observed-covariate×latent-class-specific average counterfactual outcomes are iden-

tified by computing average outcomes conditional on observed covariates and assigned latent

classes, then correcting for potential errors in the latent-class assignments.1 These average

counterfactual outcomes can then be used to identify covariate×latent-class-specific average

causal effects which, in turn, can be aggregated to the population and treated-population lev-

els to identify the average effect of the treatment (ATE) and average effect of the treatment

on the treated (ATT). This approach to identification suggests non- and semi-parametric

latent-class matching and reweighting estimators for average causal effects under selection

on unobservables. Because the estimators obviate the need to estimate the full distribution of

counterfactual outcomes, they are computationally attractive. They are also simple enough

to be implemented using routines available in standard statistical packages.

Though the conditions under which this approach can be used to identify average causal

effects are broadly similar to those for the non- and semi-parametric difference-in-differences

methods described above, the latent-class approach has several advantages. Unlike difference-

in-differences methods, it places no restrictions on how latent variables affect counterfactual

outcomes. It can be applied when the effect of those variables on outcomes changes over time

(which would invalidate the parallel-trends assumption) or when counterfactual outcomes are

not additively separable in latent class membership (as required by the method of Bonhomme

1The insight that the classification probabilities can be recovered from elements of the finite-mixture
model is originally due to work by Bolck et al. (2004) on latent-class regression (also see Vermunt, 2010).
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and Sauder 2011). It can also be applied when outcomes are observed only at a single point in

time, provided that there are sufficient non-outcome auxiliary variables with which to identify

the first-step finite-mixture model. In addition, rather than remove the bias due to selection

on unobservables, it identifies average causal effects conditional on those unobservables; these

latent-class-specific effects may be of intrinsic interest.

A drawback of the latent-class approach is that it requires specification and identification

of an auxiliary finite mixture model. In many cases, finite-mixture models are nonparamet-

rically identified from variation in observed variables, intuitively because successive real-

izations of those variables reveal information about the latent classes to which individuals

likely belong. However, identification requires restrictions on the number and dimension of

the observed variables included in the model and on the latent structure through which they

are related; I discuss specification and identification of the first-step finite-mixture model in

greater detail below.

This is not the first paper to combine finite-mixture models with matching and propensity-

score methods. This paper’s closest progenitors are series of papers by Haviland and Nagin

(2005), Haviland, Nagin, Rosenbaum, and Tremblay (2008), and Bartolucci, Grilli, and

Pieroni (2012a,b).2 Haviland and Nagin (2005) and Haviland et al. (2008) use latent-class

assignments based on a finite-mixture model of pre-treatment-period delinquent behavior

as a device for matching gang members to non-members with comparable histories of such

behavior. They use within-assigned-class comparisons of members and non-members in or-

der to estimate the effect of gang membership on delinquency under the assumption that

delinquent behavior is independent of gang membership conditional on observed behavioral

histories. The method proposed by Bartolucci et al. (2012a,b) uses a finite-mixture model

of the evolution of the treatment decision and observed covariates to obtain latent-class-

specific propensity scores. The second step of their procedure computes treatment effects

using propensity-score reweighting methods within assigned classes under the assumption

that counterfactual outcomes are independent of treatment status given observed covariates

and latent class membership.

As I discuss below, the methods used in these papers do not identify average causal effects

within observed-covariate×latent-class strata. The reason for this is that the latent classes to

which individuals are assigned may not be the classes to which they actually belong. In other

words, latent-class assignments based on posterior probabilities of class membership obtained

2A related literature analyzes the sensitivity of treatment effect estimates to the assumption of selec-
tion on observables by estimating those effects under different assumptions about an unobserved covariate
(Rosenbaum and Rubin, 1983a; Imbens, 2003). The method developed here differs from these papers by
using information from the auxiliary model to relate individuals’ latent classes to their observables in order
to point-identify average causal effects.
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from an auxiliary finite-mixture model are error-ridden measures of true class membership.

The procedure developed below uses information recovered from the auxiliary finite-mixture

model to identify the distributions of, and ultimately correct for, these classification errors.

I introduce the identification and estimation procedures by example in Section 2. In Sec-

tion 3.1, I discuss the assumptions and data requirements of the procedures. In Section 3.2,

I give an overview of the specification, identification and estimation of finite-mixture models.

I show how latent-class-specific average counterfactual outcomes are identified in Section 3.3

and how they can be used to identify average causal effects in Section 3.4. In Section 4, I

provide Monte-Carlo evidence on the small-sample performance of the estimators. In Section

5, I apply the results to estimate the effect of gang membership on violent delinquency when

unobserved delinquent tendencies may influence the decision to join a gang. I conclude in

Section 6.

2 An introductory example

To motivate the identification procedures developed in this paper, I begin with a simple

example based on work by Haviland and Nagin (2005) and Haviland et al. (2008), who

study the effect of gang membership on violently delinquent behavior under a selection-on-

observables assumption which holds that potentially counterfactual delinquent behavior with

and without gang membership is independent of observed gang membership conditional on

histories of such behavior. Their key innovation is to identify the effect of gang membership

by comparing behavioral outcomes among gang members and non-members assigned to the

same latent trajectory groups, a set of unobserved classes that characterize individuals’

propensity for delinquency. They impute the groups to which individuals belong using a

finite-mixture model which assumes that successive realizations of delinquent behavior during

a pre-treatment period are independent of one another conditional on group membership,

and show that gang members and non-members assigned to the same latent group have

similar behavioral histories.

A natural extension of this idea is to identify the effect of gang membership on delinquency

when individuals select into gang membership on the basis of their unobserved trajectory-

group membership. Let Y0T represent the delinquent behavior that an individual would

exhibit at time T if they were not a gang member in that period, Y1T represent their behavior

if they joined a gang in that period, and DT ∈ {0, 1} be an indicator for gang membership

in period T , so that observed behavior at time T can be expressed as YT = (1 −DT )Y0T +

DTYT . Suppose for simplicity that each individual belongs to one of two latent classes

J ∈ {1, 2}, taken for the purpose of this application to be behavioral trajectory groups, and
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that counterfactual outcomes (Y1T , Y0T ) are independent of gang membership DT conditional

on trajectory-group membership J .

In addition, suppose that we also observe histories of delinquent behavior Z = (Y1, . . . , YT−1)

recorded during a pre-treatment period in which nobody has joined a gang and, following

Haviland and Nagin (2005) and Haviland et al. (2008), that successive realizations of such

behavior are independent of one another conditional on trajectory-group membership. I

assume for simplicity that these measures are discrete (though the argument that follows

applies without change to discretized versions of continuous variables, and can be modified

to accommodate the continuous case).3 In this case, regardless of eventual gang membership,

the likelihood of an individual’s history for these auxiliary variables can be expressed as

ℓ(Z|DT = d) =
󰁛

j∈{1,2}

P (J = j|DT = d)
T−1󰁜

t=1

P (Yt = yt|J = j,DT = d), (1)

for d ∈ {0, 1}.
Because identification and estimation of finite-mixture models of the form in (1) is well

understood (I discuss these issues in Section 3.2), suppose that the components P (J =

j|DT = d) and P (Yt = yt|J = j,DT = d) for j ∈ {1, 2}, d ∈ {0, 1}, and yt ∈ suppYt, of (1)

are known. Using these components, the posterior probability qj that an individual belongs

to trajectory group j ∈ {1, 2} is identified from Bayes’ rule as

qj = P (J = j|Z,DT ) =
P (J = j|DT )

󰁔T−1
t=1 P (Yt|J = j,DT )󰁓

k∈{1,2} P (J = k|DT = d)
󰁔T−1

t=1 P (Yt|J = k,DT )
.

Given these posteriors, a straightforward way to impute the trajectory groups to which

individuals belong is to assign each individual to the group Ĵ for which their posterior is

largest. Under the assumptions on the data-generating process, an intuitive approach to

identifying the causal effect of gang membership among members of group j is to compare

time-T outcomes between gang members and non-members assigned to group j, that is via

the comparison

E(YT |DT = 1, Ĵ = j)− E(YT |DT = 0, Ĵ = j). (2)

Similar approaches have been taken elsewhere in the literature (see, for example, Haviland

and Nagin, 2005; Haviland et al., 2008; Bartolucci et al., 2012a,b).4

3As I discuss in Section 3.2, the identification argument can also be modified to allow for more complex
relationships among the auxiliary variables.

4It is important to note that Haviland and Nagin (2005) and Haviland et al. (2008) use this approach
under the assumption of selection on observables and show that treated and untreated units assigned to the
same class have similar observables.
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The problem with this approach in the current context is that the latent trajectory groups

to which individuals are assigned are not necessarily those to which they actually belong;

imputed group membership is an error-ridden measure of true membership. Furthermore,

because this misclassification problem is one of prediction, rather than sampling, error, it will

persist even in large samples or at the population level. A consequence of this is that mean

outcomes among those with the same gang-membership status and imputed trajectory group

do not identify trajectory-group-specific counterfactual outcomes. In fact, under the ancil-

lary assumption that counterfactual outcomes (Y0T , Y1T ) are independent of the behavioral

histories Z conditional on trajectory-group membership J (in other words, the behavioral

histories are only informative about counterfactual outcomes insofar as they are correlated

with trajectory-group membership), we can write

E(YT |DT = d, Ĵ = j) = E(YT |DT = d, J = 1, Ĵ = j)P (J = 1|Ĵ = j,DT = d)

+ E(YT |DT = d, J = 2, Ĵ = j)P (J = 2|Ĵ = j,DT = d)

= E(YdT |J = 1)P (J = 1|Ĵ = j,DT = d)

+ E(YdT |J = 2)P (J = 2|Ĵ = j,DT = d),

(3)

where the second equality follows from the assumptions that counterfactual outcomes are

independent of treatment status and behavioral histories given group membership. Thus,

gang-membership×imputed-trajectory-group-specific mean outcomes identify a weighted av-

erage of counterfactual outcomes for members of all trajectory groups.

In addition to showing that (2) does not identify the average effect of the treatment

among members of trajectory group j, (3) suggests a strategy for recovering that effect from

observable variables and the components of the finite-mixture model. The classification

probabilities P (J = k|Ĵ = j,DT = d), j, k ∈ {1, 2}, in (3) are identified via

P (J = k|Ĵ = j,DT = d) =

󰁓
z∈suppZ P (J = k|Ĵ = j, z, d)P (Ĵ = j|z, d)P (z|d)

P (Ĵ = j|d)

=

󰁓
z P (J = k|z, d)1(Ĵ = j)P (z|d)

P (Ĵ = j|d)
= E

󰀣
qk1(Ĵ = j)

P (Ĵ = j|d)

󰀏󰀏󰀏󰀏d
󰀤
,

where the first equality follows from Bayes’ rule, the second because Ĵ is a function of the

components of the finite-mixture model, and hence of (Z,D), and the third from the defini-

tion of the posteriors. Consequently, the system formed by stacking (3) for j ∈ {1, 2} can be

solved to identify the mean trajectory-group-specific counterfactual outcomes E(YdT |J = j)

for each d ∈ {0, 1} and j ∈ {1, 2}, and hence the trajectory-group-specific causal effects
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E(Y1T − Y0T |J = j) of gang membership on violent delinquency.5

Together, these arguments suggest a plug-in matching estimator for latent-class-specific

average causal effects, formed by replacing the population objects in equations (1) and (3)

with sample analogs from the data and an estimated finite-mixture model. These class-

specific causal effects can then be aggregated to the population and treated-population level

to estimate the population average treatment effect and average effect of the treatment on the

treated. The resulting estimator is straightforward to implement, requires little more than

estimation of a relatively simple finite-mixture model (many popular statistical packages,

including R, Stata, and SAS include facilities for estimating such models) and solving a

small system of equations, and obviates the need for computationally intensive estimation

of the full distribution of latent-class-specific counterfactual outcomes.6 The remainder of

this paper generalizes this simple example to more complex settings and presents evidence

on the performance of the estimators.

3 Identification and estimation

3.1 Preliminaries

Generalizing the example of Section 2, letDit be an indicator for whether individual i receives

a (binary) treatment at time t and Ydit denote the possibly counterfactual outcome that i

would experience if assigned to treatment status dt ∈ {0, 1} at time t, so that the time-t

causal effect of the treatment on unit i can be expressed as Y1it − Y0it and realized outcomes

can be expressed as Yit = (1−Dit)Y0it+DitY1it. The methods developed below can be applied

in settings where the treatment decision is made repeatedly (in which case the treatment

effect may depend on time and can be estimated at each of the t ∈ {1, . . . , T} periods in

which it is available) as well as in settings where the treatment decision is permanent and

5In the present case with two latent classes, Cramer’s rule gives

E(YdT |J = j) =
E(YT |Ĵ = j, d)P (J = k|Ĵ = k, d)− E(YT |Ĵ = k, d)P (J = k|Ĵ = j, d)

P (J = 1|Ĵ = 1, d)P (J = 2|Ĵ = 2, d)− P (J = 1|Ĵ = 2, d)P (J = 2|Ĵ = 1, d)
,

for j, k ∈ {1, 2} and j ∕= k.
6An alternative approach is to estimate the latent-class-specific distributions of counterfactual outcomes

YdT , and hence causal effects, by including observed outcomes YT in the finite mixture model. While this
approach is conceptually simpler, it poses several challenges. It may be unclear whether the finite-mixture
model is identified when it is augmented to include observed outcomes. Modeling observed outcomes also
increases the dimension, and hence the computational complexity, of the identification and estimation prob-
lems, particularly when observed outcomes are continuous or high-dimensionally discrete. Finally, includ-
ing a continuous outcome of interest in the finite-mixture model either requires discretization, choosing a
parametric distribution, or using relatively sophisticated smoothing methods (all of which may introduce
approximation error or require making somewhat arbitrary modeling decisions).
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made only once.

The approach developed below identifies average causal effects under the assumptions

that each individual is characterized by time-invariant membership Ji in one of a finite

set of latent classes and that, at time t, treatment status is strongly ignorable conditional

on latent class membership Ji and a set Xit of observed covariates (I assume for simplic-

ity that the observed covariates Xit are either discrete or discretized versions of continuous

variables, although the arguments below can be modified to accommodate continuous covari-

ates). Following Rosenbaum and Rubin (1983b), strong ignorability in this context means

that counterfactual outcomes are independent of treatment status conditional on observed

covariates and latent class membership (this is also known as conditional independence), and

that the characteristics of treated and untreated individuals overlap in the sense that the

probability of receiving the treatment conditional on covariates and latent class membership

is strictly between zero and one (this is also known as overlap).7 Formally:

Assumption 1. Counterfactual outcomes and treatment assignment satisfy

(Y0it, Y1it) ⊥⊥ Dit|Xit, Ji, (4)

and

P (Dit = 1|Xit, Ji) ∈ (0, 1), (5)

where Ji ∈ {1, . . . , |J |}.

If latent class membership were observed, Assumption 1 would be identical to the require-

ments for causal identification using standard matching and inverse probability weighting

estimators that assume selection on observables. Although, in contrast to those settings, the

latent-class overlap component (5) of Assumption 1 is not directly verifiable, as I discuss

in Section 3.5, it can be assessed as part of the identification procedure developed below.

Assumption 1 is also similar to the requirements for causal inference under the difference-in-

differences methods described above, which can be motivated by a model in which outcomes

depend on unobserved, time invariant, and additively separable fixed effects. However, As-

sumption 1 places no restrictions on the relationship between outcomes and their unobserved

determinants Ji. Although the assumption that the unobserved determinants of treatment

status and counterfactual outcomes are drawn from a discrete distribution is restrictive, as

I discuss in Section 3.2, causal effect estimates obtained using the method developed below

7This is similar to the notion of latent ignorability in Frangakis and Rubin (1999), in which counterfac-
tual outcomes are independent of randomized treatment assignment conditional on unobserved treatment-
compliance groups (complier, always taker, never taker, and defier).
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can be interpreted as approximations that improve with the number and dimension of the

auxiliary variables modeled in the first step of the procedure.

The identification procedure requires that the data contain observations on a set of aux-

iliary dependent variables Zi = (Zi1, . . . , ZiS) and possibly a set of auxiliary covariates

Wi = (Wi1, . . . ,WiS), which I index by s ∈ {1, . . . , S} to allow for the possibility that they

are recorded at different times than the variables (Yit, Dit, Xit) included in the causal model

(I assume these variables are also discrete or discretized, though this is not essential to the

argument). The purpose of these variables is to identify the components of a finite-mixture

model in order to impute the latent classes to which individuals belong.8 In the example

of Section 2, the auxiliary variables are the pre-treatment-period histories of delinquent be-

havior, and treatment status is the only auxiliary covariate, though the procedure could be

repeated within covariate strata if counterfactual delinquency were only independent of gang

membership conditional on trajectory-group membership and a set of observed covariates.

The identification procedure also requires that the auxiliary model meet the following

conditions:

Assumption 2.

(Y0it, Y1it) ⊥⊥ Zi|Xit, Ji, (6)

and Xit and Dit are elements of (Zi,Wi).

Unlike Assumption 1, which places restrictions on the underlying data-generating process,

Assumption 2 places restrictions on the auxiliary model used to identify average counter-

factual outcomes. The first part of Assumption 2 requires that the auxiliary variables Zi

exert no influence on counterfactual outcomes after conditioning on the observable covariates

Xit from the causal model and latent class membership Ji (this is the sense in which the

elements of Zi can be considered auxiliary variables). This requirement is necessary because

the identification procedure requires that average counterfactual outcomes are independent

of predicted latent class membership (and hence of the auxiliary variables used to predict

that membership) conditional on actual latent class membership.9 In many studies predi-

cated on conditional independence between counterfactual outcomes and treatment status,

this assumption will be natural. The introductory example of Section 2 is motivated by an

assumption that counterfactual behavioral outcomes are independent of gang membership

8The identification procedure can be applied with no time dimension whatsoever if there is a set of
auxiliary variables and covariates that are measured contemporaneously with treatment status and outcomes.
I develop the argument in terms of a panel structure because variation in observables over time suggests a
natural source of auxiliary variables and covariates to use in the finite-mixture model.

9This is illustrated in the introductory example of Section 2 as well as the proofs of Propositions 1 and
2 below.
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conditional on latent trajectory-group membership. In this setting, it is natural to suppose

that counterfactual outcomes are also independent of the auxiliary pre-treatment-period be-

havioral histories used to assign individuals to trajectory groups. Indeed, the failure of this

assumption would call into question the underlying premise that latent trajectory-group

membership is the only factor that influences both counterfactual behavioral outcomes and

gang membership.

However, the first part of Assumption 2 should not be assumed uncritically to follow

from Assumption 1. For example, it is possible that histories of delinquent behavior in-

fluence counterfactual outcomes in a way that does not affect the decision to join a gang

(in which case Assumption 1 would hold without conditioning on such histories, while As-

sumption 2 would not). In this case, histories of pre-treatment-period delinquency would

be a poor choice of auxiliary variables to use in the first-step finite-mixture model. The

plausibility of Assumption 2 ultimately depends on the setting of study and the candidate

auxiliary variables. As in research designs based on selection on observables, the validity of

Assumptions 1 and 2 should be evaluated carefully on the basis of theoretical reasoning and

prior empirical evidence.

The second part of the assumption requires simply that treatment status Dit and the

covariates Xit from the causal model are included in the auxiliary model. This requirement

is necessary because the components of the auxiliary model are used to correct for errors

in latent class assignments which, like average counterfactual outcomes, may depend on

covariates and treatment status.10

While the second part of this assumption allows for the possibility that the set Zi of

auxiliary variables contains elements that do not also appear in the causal model (i.e., Yit,

Dit, and Xit), it does not require such elements. Nor does the assumption require that there

are auxiliary covariates, although it does allow for them. For example, in the Monte Carlo

exercise presented in Section 4, I use an auxiliary model of the history Zi = (Di1, . . . , DiT ) of

the treatment decision over time as a function of the same time-invariant covariate Wi = Xi

included in the causal model to analyze the effect of a treatment that can be received in mul-

tiple periods. On the other hand, in the empirical application of Section 5, I use an auxiliary

model of behavioral histories Zi = (Yi0, . . . , Yi3) that are measured in a pre-treatment period

before anyone has joined a gang (and are therefore not included in the causal model), with

treatment status Di as an auxiliary covariate, to estimate the effect of gang-membership on

delinquent behavior in a post-treatment period. Assumption 2 accommodates both of these

configurations.

10The proofs of Propositions 1 and 2 below make this intuition rigorous.
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3.2 The auxiliary model

The first step of the identification procedure involves using an auxiliary finite-mixture model

to impute the latent classes to which individuals belong. Although mixtures models have

a long history in econometrics (Heckman and Singer, 1984a,b, e.g.), a growing literature

on the conditions under which finite-mixture models are identified without distributional

assumptions or other parametric restrictions (see Hall and Zhou, 2003; Allman, Matias, and

Rhodes, 2009; Kasahara and Shimotsu, 2009; Hu and Shum, 2012; Henry, Kitamura, and

Salanié, 2014; Bonhomme, Jochman, and Robin, 2016; Compiani and Kitamura, 2016) has

found increasing use in econometric applications involving unobserved heterogeneity (see,

for example, Arcidiacono and Jones, 2003; Arcidiacono and Miller, 2011; Aguirregabiria and

Mira, 2016). This section provides a brief overview of the specification, identification and

estimation of finite-mixture models in order to demonstrate the applicability of the approach

developed in this paper to a variety of different settings.

Finite mixtures are not, in general, nonparametrically identified without restrictions on

how the auxiliary variables and auxiliary covariates are related. However, the requirements

for identification have been established for several important and flexible classes of finite

mixture models. Nonparametric identification is important in this context because it im-

plies that the components of the finite-mixture model used to assign observations to latent

classes, and ultimately the causal effects of the treatment, are identified from variation in

the observed auxiliary variables and covariates.11

3.2.1 Latent-class models

One case where identification is well understood is when the auxiliary dependent variables

Zs, s ∈ {1, . . . , S}, are independent of one another conditional latent class membership J

and potentially a set of time-invariant auxiliary covariates W . This is the type of model

used in the introductory example of Section 2, which models realizations Z of pre-treatment

period delinquent behavior as a function of treatment status DT at time T .

When the auxiliary variables are discrete, finite mixtures of this form are known as

latent-class models. Assume for now that the number |J | of latent classes is known (I

discuss identification and estimation of |J | below). In this case, the likelihood of observing

Z = z given that W = w can be expressed as

ℓ(z|w) =
|J |󰁛

j=1

P (J = j|w)
S󰁜

s=1

P (Zs = zs|j, w). (7)

11Parametric identification of finite mixtures follows more readily (see Teicher, 1963; Grün and Leisch,
2008b, for a discussion).
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Allman et al. (2009) show that such models are nonparametrically identified for any number

|J | of latent classes, provided that enough auxiliary variables Zs are observed or that the

support of the observed variables is of sufficient dimension.12

3.2.2 Dynamic discrete-choice models

In some cases, it may be unrealistic to assume that auxiliary variables are independent of one

another conditional on latent class membership and the auxiliary covariates, as in the simple

structure of the latent-class model (7). For example, Bartolucci et al. (2012a,b) estimate the

effect of wage subsidies on employment using an inverse-probability-of-treatment-weighting

estimator based on propensity scores that depend on latent class membership. To assign

firms to latent classes, they use a multi-period finite-mixture model in which the receipt of

wage subsidies (Zs) in each period depends on latent-class membership as well as a vector

Ws of time-varying firm characteristics (employment, wages, capital, sales, profits and prior

receipt of subsidies), which in turn depends on lagged values of these characteristics.

More complex models like theirs can be viewed as dynamic discrete choice models with

unobserved heterogeneity, for which a number of nonparametric identification results have

been established. For example, if the auxiliary covariates evolve according to a first-order

Markov process, the likelihood of observing a sequence z of auxiliary variables given a se-

quence w of auxiliary covariates is

ℓ(z, w|w1) =

|J |󰁛

j=1

P (J = j|w1)
S󰁜

s=2

P (Zs = zs|j, ws)P (Ws = ws|j, ws−1, zs−1)

× P (Z1 = z1|j, w1).

(8)

Kasahara and Shimotsu (2009, also see Hu and Shum, 2012) establish conditions under

which several such models are nonparametrically identified, depending on the characteristics

of the data (the number of periods and dimension of the covariates) and the structure of

the model (for example, whether the distributions of the auxiliary variables are stationary,

whether lagged auxiliary variables are included among the auxiliary covariates, and whether

the transitions between auxiliary covariates depend on latent class membership).13 These

12For example, if each of the Zs have k points of support, they show that a sufficient condition for identi-
fication is that S ≥ 2⌈logk |J |⌉+ 1 (where ⌈·⌉ is the integer ceiling function, see Allman et al. 2009, Section
5). Strictly speaking, in the discrete case Allman et al. (2009) provide conditions for generic identifiability,
meaning that the set of latent-class-specific mass functions on which identification fails is of Lebesgue mea-
sure zero. They also establish identification for the case of continuous Z (also see Kasahara and Shimotsu,
2009; Bonhomme et al., 2016, for the continuous case).

13In general, they show that the number of latent classes for which the model is identified depends on
the dimension of the covariates, while additional time periods help identify models with features such as
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identification results for dynamic finite-mixture models allow the causal effect identification

procedure developed below to be implemented using first-step models in which the auxiliary

variables and covariates are related through more complex structures than the simple latent-

class model (7).

3.2.3 Estimation

In principle the auxiliary model can be estimated nonparametrically by directly maximizing

the sample analog of E{log[ℓ(Z,W |W1; θ)]} with respect to the vector θ of unrestricted com-

ponents of the finite-mixture model—that is, the P (j|w1), P (zs|j, ws) and P (ws|j, wr<s, zr<s)

for j ∈ {1, . . . , |J |}, (zs, ws) ∈ supp(Zs,Ws), and s ∈ {1, . . . , S}. While the discussion in

this section has centered on completely nonparametric identification, these components can

also be specified parametrically in order to implement the latent-class matching estimators

semiparametrically (this is analogous to implementing an inverse-probability-weighting es-

timator using propensity scores obtained using a flexible parametric logit or probit model).

Because finite-mixture log likelihoods can be difficult to maximize directly, they are often

estimated using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977, see

Arcidiacono and Miller 2011 for a discussion of this approach in a dynamic discrete-choice

setting).14 Many statistical packages include some facility for estimating finite-mixture mod-

els.

Another consideration in estimating finite mixtures is the number of latent classes that

should be included in the model. The most common approach is to estimate multiple models,

each with a different number of latent classes, and choose the model that maximizes either

the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC) (most

routines for estimating finite mixtures include these statistics as part of their output by

default; see, e.g., Grün and Leisch 2008a). In addition, Kasahara and Shimotsu (2009, 2014)

show that the number of classes, or a bound on that number, can be identified and estimated

nonparametrically.

While the formal results on identification of average causal effects developed below require

that the number of latent classes for which the finite-mixture model is identified coincides

with the number of classes for which Assumption 1 holds, there is no guarantee that this will

hold in any given application. However, as the results discussed above show, the number

of classes for which auxiliary model is identified is increasing in the number and dimension

nonstationarity, latent-class-specific transitions between auxiliary covariates, and lagged dependent variables
as covariates (see Kasahara and Shimotsu, 2009, for details).

14Wu (1983) showed that the EM algorithm may converge to flat points of the log-likelihood function that
are not global maxima. A typical solution is to initialize the algorithm at a number of different starting
values and choose the solution with the highest log likelihood (also see Arcidiacono and Jones, 2003).
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of the auxiliary variables. Consequently, causal effects obtained using the identification

procedure developed below can be interpreted as approximations whose quality improves

with the richness of the auxiliary variables.

3.3 Identifying average counterfactual outcomes within unobserved

strata

Denote by qji the posterior probability that individual i belongs to class j ∈ {1, . . . , |J |},
given their realizations of the auxiliary variables (Zi,Wi). These posterior probabilities can

be expressed in terms of the components of the auxiliary model via Bayes’ rule as

qji = P (Ji = j|Zi,Wi) =
P (Ji = j|W1i)ℓ(Zi,Wi|j,W1i)󰁓|J |
k=1 P (Ji = k|W1i)ℓ(Zi,Wi|k,W1i)

, (9)

and are therefore identified along with the auxiliary model.15

Two-step analyses based on finite-mixture models (such as those by Haviland and Nagin

2005, Haviland et al. 2008, and Bartolucci et al. 2012a,b) typically proceed by assigning

individuals to latent classes according to posterior probabilities of class membership recov-

ered from an auxiliary model, then examining the relationships of interest within assigned

classes. Such studies typically use one of two procedures for assigning observations to latent

classes. Under modal assignment (also known as hard assignment or the classify-analyze

method), individuals are assigned to the latent class Ĵi for which their posterior probability

of membership is greatest:

Ĵi = argmax
j∈{1,...,|J |}

qji.

Under proportional assignment (also known as soft assignment or the expected-value method),

individuals are assigned to each latent class in proportion to their posterior probabilities of

membership in that class.

As I note above, because the classes to which individuals are assigned under these pro-

cedures may not be the classes to which they actually belong, estimators that compare

treated and untreated individuals assigned to the same latent class do not identify latent-

class-specific average causal effects. However, the following results show that under either

assignment method the posterior probabilities of latent class membership can be used to

recover the distributions of these classification errors, and ultimately correct for them in

order to identify average causal effects within unobserved strata.

15Most pre-programmed routines for estimating finite-mixture models include estimates of these posteriors
as part of their output.
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3.3.1 Modal assignment

In a typical modal-assignment analysis, covariate×latent-class specific average counterfactual

outcomes are imputed as

E(Yt|Ĵ = j, dt, xt). (10)

Although (10) does not identify the mean counterfactual outcome E(Ydt|J = j, xt) of interest,

Proposition 1 below shows how this outcome (and hence average causal effects) can be re-

covered by correcting for errors in the latent-class assignments. The proof of the proposition

is nearly identical to the argument developed in the example of Section 2. Under Assump-

tions 1 and 2, the modal assignment estimand (10) represents an average of counterfactual

outcomes across all latent classes, weighted by the probabilities of membership in each class

conditional on modal assignment to class j. Since these probabilities are identified from the

auxiliary model, the system of equations formed by stacking these weighted averages for each

possible latent-class assignment Ĵ ∈ {1, . . . , |J |} can be solved to recover the average causal

effects of interest. All proofs are presented in Appendix A.

Proposition 1 (Identification via modal assignment). Let EYdt|J,xt be the |J |-vector of av-

erage counterfactual outcomes with jth element E(Ydt|J = j,Xt = xt). Let EYt|Ĵ ,dt,xt
be the

|J |-vector of modal assignment estimands with jth element E(Yt|Ĵ = j,Dt = dt, Xt = xt).

Let Pdt,xt be the |J | × |J | matrix of classification probabilities with (j, k)th element P (J =

k|Ĵ = j,Dt = dt, Xt = xt).

Under Assumptions 1 and 2,

EYdt|J,xt = P−1
dt,xt

EYt|Ĵ ,dt,xt

for all (dt, xt) such that Pdt,xt is invertible. Furthermore, the (j, k)th element of Pdt,xt satisfies

P (J = k|Ĵ = j, dt, xt) = E

󰀣
qk1(Ĵ = j)

P (Ĵ = j|dt, xt)

󰀏󰀏󰀏󰀏Dt = dt, Xt = xt

󰀤
.

Embedded in Propositions 1 is the ancillary requirement that the matrix of classification

probabilities Pdt,xt be invertible for each treatment status dt and covariate stratum xt. Of

note, this restriction rules out the use of auxiliary variables that are independent of latent

class membership, in which case the finite-mixture model is not identified (a model where

all individuals belong to the same class and one where the parameters do not vary with class

membership would have the same likelihood). In such cases, the classification-probability

matrices are not invertible (because the latent-class assignments 1(Ĵ = j) are independent of
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J) and, consequently, average counterfactual outcomes are not identified.16 This invertibility

requirement may also be violated if the overlap component of Assumption 1 fails, a possibility

that I discuss further in Section 3.5.

3.3.2 Proportional assignment

A similar argument can be applied to methods based on proportional assignment to latent

classes. Proportional assignment methods classify individuals as members of each latent class

in proportion to their posterior probabilities of class membership, and impute counterfactual

outcomes within (Xt, J) strata as

E

󰀕
Ytqj

P (J = j|xt, dt)

󰀏󰀏󰀏󰀏xt, dt

󰀖
= E

󰀕
Ytqj

E(qj|xt, dt)

󰀏󰀏󰀏󰀏xt, dt

󰀖
. (11)

Although the proportional assignment method is motivated by uncertainty about latent class

membership, the resulting estimand still does not identify average counterfactual outcomes

within covariate×latent-class strata. Proposition 2 shows that a similar error correction can

be used to recover these mean counterfactual outcomes. Like that for the previous proposi-

tion, the proof shows that the proportional assignment estimand identifies a weighted average

of latent-class-specific mean counterfactual outcomes, which can be inverted to recover the

mean counterfactual outcomes of interest themselves.

Proposition 2 (Identification via proportional assignment). Let EYdt|J,xt be the |J |-vector
of average counterfactual outcomes with jth element E(Ydt|J = j,Xt = xt). Let EYtqJ |dt,xt be

the |J |-vector of proportional assignment estimands with jth element E(Ytqj|Dt = dt, Xt =

xt)/E(qj|Dt = dt, Xt = xt). Let Qdt,xt be the |J | × |J | matrix of expected proportional

latent-class assignments with (j, k)th element E[P (J = k|Z)|J = j,Dt = dt, Xt = xt].

Under Assumptions 1 and 2,

EYdt|J,xt = Q−1
dt,xt

EYtqJ |dt,xt

for any (dt, xt) such that Qdt,xt is invertible. Furthermore, the (j, k)th element of Qdt,xt

16As I note in Section 3.1, Assumption 2 will be violated if some of the auxiliary variables are correlated
with counterfactual outcomes conditional on latent class membership and the covariates included in the
causal model (for example, if delinquent behavior at time T −1 were correlated with counterfactual behavior
at time T ). A natural solution to such violations is to include the offending auxiliary variables among the
covariates Xit (in which case counterfactual outcomes would be conditionally independent of these variables
by construction). However, including all of the auxiliary variables among those covariates would violate the
invertibility requirements (both the modal and proportional classification matrices would consist of identical
rows). It would therefore be impossible, for example, to condition on the entire history of delinquent behavior
modeled in the first step of the introductory example in Section 2.
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satisfies

E[P (J = k|Z)|J = j,Dt = dt, Xt = xt] = E

󰀕
qjqk

P (J = j|dt, xt)

󰀏󰀏󰀏󰀏Dt = dt, Xt = xt

󰀖
.

The above caveat regarding the importance of the invertibility requirement on the classification-

probability matrices for Proposition 1 applies mutatis mutandis to Proposition 2, with Qdt,xt

in place of Pdt,xt and P (J = j|Z) in place of 1(Ĵ = j).

3.4 Population average causal effects and their reweighting inter-

pretation

Propositions 1 and 2 show that the classification errors associated with both modal and

proportional latent-class assignment can be corrected in order to use these procedures to

identify average counterfactual outcomes E(Ydt|xt, j) within (Xt, J) strata. The differences

between average counterfactual treated and untreated outcomes can then be used to identify

(Xt, J)-strata average causal effects as

ATEt(xt, j) = E(Y1t − Y0t|xt, j). (12)

These strata-specific average causal effects, in turn, can be aggregated to the population

and treated-population levels in order to identify the time-t average effect of the treatment

(ATE) as

ATEt = E(Y1t − Y0t) =
󰁛

xt,j

ATEt(xt, j)P (Xt = xt, J = j), (13)

and the average effect of the treatment on the treated (ATT) as

ATTt = E(Y1t − Y0t|Dt = 1) =
󰁛

xt,j

ATEt(xt, j)P (Xt = xt, J = j|Dt = 1), (14)

where (xt, j) ∈ supp(Xt, J).
17 The aggregation weights used in (13) and (14) are identi-

fied from the auxiliary model and observed covariates and treatment status by iterating

expectations on qj = P (J = j|Z,W ) as P (xt, j) = E(qj|xt)P (xt) and P (xt, j|Dt = 1) =

E(qj|xt, Dt = 1)P (xt|Dt = 1).

Many methods for identifying treatment effects under the assumption of selection on

observables (including matching and difference-in-differences matching) can be interpreted

as Horvitz-Thompson-style (1952) reweighting procedures that adjust for differences between

17Note that under ignorability (Assumption 1), the average effect of the treatment and the average effect
of the treatment on the treated are the same conditional on covariates and latent class membership.
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the characteristics of the treated and untreated populations (see, e.g., Robins, Rotnitzky,

and Zhao, 1994; Hirano, Imbens, and Ridder, 2003; Abadie, 2005; Imbens and Wooldridge,

2009; Imbens, 2014). The following result shows that a similar interpretation is available for

the latent-class methods developed above.

Proposition 3 (Identification via reweighting). Let aj ∈ {1(Ĵ = j), qj} be a procedure for

determining assignment to latent class j ∈ {1, . . . , |J |}, and let Adt,xt ∈ {Pdt,xt , Qdt,xt} be

the associated matrix of classification probabilities for each xt and dt in supp(Xt, Dt). Under

Assumptions 1 and 2, ATEt = E[Yt(ω1t − ω0t)] and ATTt = E[Yt(ω̃1t − ω̃0t)], where

ωdt =
󰁛

j

󰁛

k

A−1
dt,Xt

(j, k)
ak1(Dt = dt)P (J = j|Xt)

E(ak|Xt, dt)P (dt|Xt)

for dt ∈ {0, 1},

ω̃1t =
1(Dt = 1)

P (Dt = 1)

and

ω̃0t =
󰁛

j

󰁛

k

A−1
1,Xt

(j, k)
ak1(Dt = 0)P (J = j|Xt, Dt = 1)P (Dt = 1|Xt)

E(ak|Dt = 0, Xt)P (Dt = 0|Xt)P (Dt = 1)
.

As noted above, the components of the weights ωdt and ω̃dt are identified from the aux-

iliary model and observed covariates and treatment status.18

3.5 Estimation and inference

The identification results presented above suggest plug-in strategies for implementing latent-

class matching and reweighting estimators for the ATE and ATT. The strategies follow

18To relate the latent-class reweighting procedures to those based on selection on observables (see Hirano
et al., 2003), note that, were J observed, aj would be an indicator for J = j and Adt,Xt would be an identity
matrix, so that E(Ytωdt) would become

E

󰀳

󰁃
󰁛

j

Yt1(J = j)1(Dt = dt)

P (J = j|Xt, dt)

P (J = j|Xt)

P (Dt = dt|Xt)

󰀴

󰁄 = E

󰀳

󰁃
󰁛

j

Yt1(J = j)1(Dt = dt)P (J = j|Xt)

P (J = j,Dt = dt|Xt)

󰀴

󰁄

= E

󰀳

󰁃
󰁛

j

Yt1(J = j)1(Dt = dt)

P (Dt = dt|Xt, j)

󰀴

󰁄 = E

󰀕
Yt1(Dt = dt)

P (Dt = dt|Xt, J)

󰀖
,

which is the population analog of the standard inverse-probability-of-treatment-weighting estimator for
E(Ydt). After similar manipulation, E[Yt(ω̃1t − ω̃0t)] becomes

E

󰀕
Yt1(Dt = 1)

P (Dt = 1)
− Yt1(Dt = 0)P (Dt = 1|J,Xt)

P (Dt = 0|J,Xt)P (Dt = 1)

󰀖
,

which is the inverse-probability-of-treatment-weighting form of the ATT.
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naturally by replacing population objects with consistent estimates. Both estimators require

(i) using the estimated finite-mixture model to estimate the posterior probabilities of latent

class membership and (ii) using the estimated posteriors to estimate either the modal- or

proportional-assignment classification probability matrices according to the expressions given

in Propositions 1 or 2.

The latent-class matching estimator can then be implemented by (iii) applying the esti-

mated classification probability matrices to uncorrected modal- or proportional-assignment

estimators to obtain estimates of covariate×latent-class-specific average counterfactual out-

comes according to the expressions in Proposition 1 for modal assignment or Proposition

2 for proportional assignment, and (iv) aggregating covariate×latent-class-specific average

treatment effects to the population and treated-population levels using estimates of the

aggregation weights in expressions (13) and (14) to estimate the ATE and ATT.19 The

reweighting estimators can be implemented by (iii’) combining the estimated posteriors and

classification probability matrices with the data to estimate the weights for the ATE or ATT

according to the expressions given in Proposition 3 and (iv’) taking weighted averages of

observed outcomes.

The matching and reweighting estimators are numerically equivalent. An advantage of

the matching estimators is that they produce initial estimates of covariate×latent-class-

specific average counterfactual outcomes, which may be of intrinsic interest when the latent

classes can be interpreted meaningfully.20 An advantage of the reweighting estimators is that

they may be combined with regression and other methods in order to obtain doubly robust

estimators, as in Robins et al. (1994).

An important concern in any nonparametric treatment effect estimation setting is whether

there is overlap between the characteristics of treated and untreated individuals. The overlap

component (5) of Assumption 1, which holds that individuals from all covariate×latent-class

strata are treated with probability strictly between zero and one, ensures that average coun-

terfactual outcomes are identified within those strata. In estimation, poor overlap (i.e.,

treatment probabilities close to zero or one) may lead to imprecision due to numerical diffi-

culties associated with computing either the uncorrected modal- or proportional-assignment

19This amounts to matching each treated individual to every untreated individual with the same covariates
and latent class membership. The simplest way to accommodate continuous covariates is via semiparametric
discretization. In addition, if the components of the finite-mixture model are specified as parametric functions
of continuous covariates, the proportional-assignment classification probabilities can be estimated for each
individual using sample analogs of the second equality in expression (20) of the proof of Proposition 2
in Appendix A, which can in turn be used to form a semiparametric implementation of the reweighting
estimators. This is equivalent to implementing an inverse-probability-of-treatment-weighting estimator using
a parametric model for the propensity score.

20For example, Haviland and Nagin (2005) assign individuals to three latent trajectory groups characterized
by chronic, low, and declining levels of delinquency.
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estimators (i.e., the sample analogs of expressions (10) and (11)) and inverting the corre-

sponding classification probability matrices. The proportional-assignment-based estimators

may be preferable when overlap is limited, since they can be computed even when no observa-

tions are assigned to a particular covariate×treatment×latent-class stratum (which is more

likely when overlap is poor). As a rule of thumb for addressing poor overlap in selection-

on-observables research designs, Crump et al. (2009) propose estimating average treatment

effects among those for whom the probability of receiving the treatment conditional on co-

variates is between .1 and .9. This approach can be adapted to the latent-class setting by

excluding, when aggregating to the population or treated-population level, (Xt, J) strata for

which estimates of P (Dt = 1|xt, j) lie outside of the interval (.1, .9).

The consistency of the latent-class matching and reweighting plug-in estimators follows

under Assumptions 1 and 2 and standard regularity conditions (see Newey and McFadden,

1994, Theorem 2.6) from the consistency of the MLE (or of GMM) and Slutsky’s theorem on

probability limits of functions of random variables (Wooldridge, 2010, Lemma 3.4).21 The

simplest way to conduct statistical inference for the latent-class matching and reweighting

estimators, which involve somewhat complex functions of the data and estimated finite-

mixture model, is with a nonparametric bootstrap in which both the auxiliary model and

average causal effects are estimated at each replication (because finite mixtures are only

identified up to permutations of the labels on the latent classes, it is good practice when

bootstrapping latent-class-specific estimators to initiate estimation at each bootstrap repli-

cation with estimates obtained using the full sample; see Grün and Leisch 2008a). I present

asymptotic standard errors based on a method-of-moments interpretation of the reweighting

estimators in Appendix B.

4 Monte Carlo studies

4.1 Data-generating process

I conduct several simulation studies to illustrate the use of the latent-class matching esti-

mators and to provide evidence on their small-sample performance. In the settings that I

simulate, the treatment is available in each time period and, though successive treatment

decisions are serially correlated, those decisions are independent of one another conditional

on covariates and latent class membership.

For the main study, the J are drawn from a three-point discrete distribution with mass

function given by the vector pj = (.3, .5, .2) for j ∈ {1, 2, 3} and the X are time-invariant

21Consistency also requires that the auxiliary model is correctly specified and identified.
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draws from a four-point discrete distribution with conditional probability mass functions

px|j =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(.25, .25, .25, .25) if j = 1

(.2, .2, .3, .3) if j = 2

(.1, .2, .3, .4) if j = 3

,

for x ∈ {1, 2, 3, 4}. Counterfactual outcomes are determined by

Y0t = J +X + 󰂃0t and Y1t = 1 + 2J + 2X + 󰂃1t

and treatment status is determined according to

Dt = 1(1 + 2J +X + 󰂃t > 5),

where 󰂃dt ∼ N(0, 2) and 󰂃t ∼ N(0, 4) for dt ∈ {0, 1} and t ∈ {1, . . . , T}, so that observed

outcomes are given by Yt = (1−Dt)Y0t +DtY1t.

I selected these specifications to ensure overlap across (Xt, J) strata and to generate

differences in strata-specific causal effects. While neither time effects nor lagged variables

affect treatment status or counterfactual outcomes in the models that I use to generate the

data, the methods developed above could be applied in such circumstances.

4.2 Estimation

For the main study, I simulate 250 datasets {Dit, Y1it, Y0it, Yit, Xi, Ji} for i ∈ {1, . . . , 2000}
and t ∈ {1, . . . , 10}. I then compute latent-class matching estimates of the population,

treated population, and latent-class-specific average effects of the treatment. I implement

these estimators from the perspective of an empiricist who hypothesizes, correctly, that the

data are generated from the processes described above, but only has access to the variables

{Dit, Yit, Xi} that would be observed in applications.

The repeated-treatment setting suggests implementing the first step of the procedure us-

ing a finite-mixture model of the sequence of treatment decisions in which successive decisions

are independent of one another conditional on covariates and latent class membership.22 In

the notation of Section 3.2, I estimate a model of the form in (7), with Z = (D1, . . . , DT )

and W = X (i.e., the auxiliary variables are the histories of the treatment decision and the

auxiliary covariates are the same as the covariates in the causal model). This approach illus-

22There are multiple ways that finite-mixture models of the observed variables could be used as part of
the first step of the procedure. For example, the first step might also consist of treatment-status-specific
finite-mixture models of outcomes observed in the first few periods, as in the example of Section 2.
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trates that the first step of the estimation procedure can be implemented using a relatively

simple finite-mixture model.

For each simulated dataset, I estimate a finite-mixture logit with individual conditional

likelihood function

ℓ(d1, . . . , dT |x; γ, β) =
|J |󰁛

j=1

P (J = j|x)
T󰁜

t=1

P (Dt = dt|x, j)

=

|J |󰁛

j=1

󰀣
eγxj

󰁓|J |
k=1 e

γxk

󰀤
T󰁜

t=1

󰀕
edtβxj

1 + eβxj

󰀖
,

(15)

where the γx1 are normalized to zero. Estimates of the auxiliary model based on (15), which

allows separate coefficients for every combination of x and j, are completely nonparametric.

I estimate the parameters of the model using the interface to the EM algorithm provided

by the R package FlexMix (Grün and Leisch, 2008a). In testing on a preliminary simulated

dataset, using three latent classes maximized both the BIC and the AIC, and I estimate the

models under this constraint.

I then use the estimated parameters of the auxiliary model to compute the latent-class

matching estimators described in Section 3.5. I construct the estimators using proportional

assignment to latent classes in order to allow for the possibility that overlap is poor in some

of the simulates. Because outcomes and the treatment decision are stationary over time in

the environment that I simulate, I estimate causal effects that are averaged over time (in

addition to covariates and latent class membership) by pooling observations from all time

periods when computing the matching estimators (rather than estimating separate treatment

effects for each time period).

For the purpose of comparison, I also estimate average causal effects using three other

methods. The first of these, feasible only in a simulation setting, is a J-observed exact

matching estimator that computes (X, J)-specific average treatment effects using the sample

analogs of E(Y |X, J,D = 1)−E(Y |X, J,D = 0), then aggregates those estimated effects to

the population, treated population, and latent-class levels. The resulting estimates can be

considered the truth against which the other methods are measured. I also present results for

an uncorrected proportional-assignment matching estimator that computes (X, J)-specific

average causal effects using sample analogs of (11), then aggregates to higher levels. Finally,

I use exact observed-covariate matching, which aggregatesX-specific causal effects computed

as the sample analogs of E(Y |X,D = 1) − E(Y |X,D = 0) to the population and treated

population levels, ignoring J entirely.
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4.3 Results

Figure 1 presents a graphical summary of the distributions of the estimates for the main

simulation study, in which X and J are correlated (the means and standard deviations of

the estimates are tabulated in Appendix C).23 The latent-class matching estimates of the

ATE (labelled “LC”) are centered around the median (and as Table 1 shows, mean) estimate

obtained by exact matching, treating J as an observed covariate (labelled “Obs”). Moreover,

the interquartile range of the latent-class matching estimates is only slightly larger than when

J is observed, suggesting minimal loss of precision. In contrast, the uncorrected-latent-class

and observed-covariate matching estimates (labelled “Unc.” and “Cov.,” respectively), while

less dispersed, are centered around medians that overstate the effect of the treatment.

The estimates of the ATT show a similar pattern. The distributions of the J-observed

and latent-class matching estimates have similar medians, though the latent-class matching

estimator is less precise. Uncorrected latent-class matching again overstates the average

effect.24

The figure also shows the distributions of estimated latent-class-specific average treatment

effects. Here, the latent-class matching estimates are much less precise in comparison to both

latent-class estimates of the (overall) ATE and ATT and to J-observed and uncorrected

latent-class matching estimates of the latent-class-specific treatment effects.25 Intuitively

this is because, though covariate×latent-class-specific counterfactual outcomes are not well-

identified when data are sparse in a given covariate stratum, aggregation according to the

empirical covariate distribution mitigates the resulting uncertainty.26 Despite this, the latent-

class estimates are all centered near the median J-observed estimate. In contrast, while the

uncorrected latent-class matching estimates are more precise, their interquartile range never

contains the J-observed median.

23In these plots, the “whiskers” indicate the minimum and maximum values (with outliers excluded ac-
cording to R’s default algorithm), the boxes indicate the interquartile range, and the solid vertical lines
indicate the median.

24In this case, observed-covariate matching approximates the ATT well, presumably because the correlation
between X and J makes the covariates good proxies for covariate×latent-class strata among the treated
population. In an additional study where X and J are independent, observed-covariate matching estimates
the ATT poorly.

25To reduce the loss of precision due to inter-simulation label swapping in the J-specific estimates, I set
the initial weights used by FlexMix to the observed J . This is similar to the common practice of using
the full sample estimate to initialize each bootstrap estimate (which is not possible in a simulation setting
since the data are redrawn before each estimation). This initialization procedure does not drive the results
however, as I obtain nearly identical results using random initializations.

26Parenthetically, much of the dispersion between the minimal and maximal latent-class-specific average
treatment effect estimates appears to be the result of a few simulates in which overlap is poor for some
covariate×latent-class combinations, making some of the Q̂d,x difficult to invert. In applications, the precision
of the latent-class-specific estimates could be improved by excluding covariate×latent-class strata with poor
overlap.
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The last panel of Figure 1 summarizes estimates of the unconditional latent-class distri-

bution (the vertical dotted lines show the assumed population proportions). The auxiliary

model identifies this distribution well, some mean reversion in the estimated proportions

notwithstanding. Though this is not surprising given the identification results discussed in

Section 3.2, it is worth emphasizing that this distribution is estimated entirely from repeated

observations of treatment status within covariate strata, highlighting the power of variation

in observables to identify models with unobserved heterogeneity.
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Figure 1: Estimates for main simulation study. “Obs.” denotes matching on covariates
where J is observed, “LC” denotes the latent-class matching esitmator, “Unc.” denotes
the uncorrected latent-class matching estimator, and “Cov.” denotes matching on observed
covariates when J is unobserved.

To provide further evidence on the performance of the estimators, I also implement

several variations on this simulation study, the results of which are summarized in Table 2

of Appendix C. In the second study, the X are drawn independently from the latent classes,

while the finite-mixture model still allows for the possibility that they are correlated. In the

third study, the data-generating process is the same as in the main study, but the finite-

mixture model is misspecified first by assuming that the J are independent of the X, and

second by using a linear function form for the logits in (15) rather than a separate coefficient

for each value ofX (here the misspecification is really that the errors in the selection equation
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are logistically distributed, since the data-generating process actually is linear). In the fourth

study, the data-generating process is the same as for the main study, but the finite-mixture

model is misspecified to use two latent classes instead of three. As Table 2 shows, the

estimators perform well in these settings. In each case, the latent-class matching estimates

are closely centered around the mean J-observed estimate, while the uncorrected-latent-class

and observed-covariate matching estimators are clearly biased.27

5 Application

To illustrate the use of the estimators, I apply them to a setting similar to that studied

in Haviland and Nagin (2005) and Haviland et al. (2008). I assume that counterfactual

behavior with and without joining a gang are independent of observed gang membership

conditional on latent trajectory-group membership. I then implement the procedure devel-

oped in Section 2 to estimate the causal effect of gang membership on violent delinquency

under this assumption.

The data for the application are drawn from the Pathways to Desistance study (Mulvey,

2016), which follows a number of juvenile offenders, initially between the ages of 14 and

18, after conviction for a serious offense. In addition to an initial interview at the time of

conviction, follow-up interviews were administered at 10 post-conviction periods (6, 12, 18,

24, 30, 36, 48, 60, 72, and 84 months past the baseline).

To analyze the effect of gang membership on violent behavior, I examine the subset of

individuals who were not gang members at the time of their conviction, and had not joined

a gang as of the 18-month follow-up interview. I then construct an indicator D for joining

a gang between 24 and 60 months after conviction in order to examine the effect of gang

membership on the probability of engaging in violently delinquent behavior between the 60-

and 84-month interviews. I construct indicators for committing robbery with a weapon,

shooting someone, beating someone to serious injury, being in a fight, and carrying a gun

during each period. I then construct indices Yt ∈ {0, 1, 2} of violent delinquency for each

pre-treatment period (the baseline and first three follow-up interviews) that take the value

0 if none of these acts were committed during period t, 1 if one such act was committed,

and 2 if two or more were committed. I measure violent delinquency during the treatment

27To assess the asymptotic standard errors presented in Appendix B, I also conduct a study on the
reweighting estimators and their standard errors. The data-generating process is the same as for the main
study but to simplify the study, I only use 100 simulated datasets and only estimate the time-one ATE (for
which the true value is simple to evaluate). The median estimated ATE is 5.61 and the median estimated
standard error is .51. The true ATE of 5.6 was contained in all of the 95% confidence intervals, although the
estimator could not be evaluated in two simulations because one of the estimated classification probability
matrices was computationally singular (presumably owing to the smaller sample size).
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period as a vector YT of indicators for having shot, robbed, beaten, or fought someone

between the 60- and 84-month interviews. After dropping observations with missing values

for these variables, those who were gang members prior to the 24-month interview, and those

who did not complete any interviews between 24 and 60 months after the baseline, 1,140

observations remain, among which the treatment group consists of 53 individuals who joined

a gang between 24 and 60 months after the baseline interview.

To assign individuals to trajectory groups, I estimate a finite-mixture model of behavioral

histories Z = (Y0, . . . , Y3) during the pre-treatment period (that is, the initial and first three

follow-up interviews) using the multinomial logit specification

ℓ(Z|D; θ) =

|J |󰁛

j=1

πj

3󰁜

t=0

2󰁛

y=0

1(Yt = y)eθ0yj+θ1yjD

1 +
󰁓2

y=1 e
θ0yj+θ1yjD

,

where the πj, j ∈ {1, . . . , |J |}, are the components of the latent trajectory-group distribution

and the θyj are the parameters of the latent-class-specific delinquency probabilities. In the

notation of Section 3.1, the auxiliary variables are Z = (Y0, Y1, Yi), treatment status D is

included as an auxiliary covariate (W ), the outcome variables are the elements of YT , and

there are no covariates in the causal model. To determine the number of groups, I estimate

the model for |J | ∈ {2, . . . , 5}. The AIC and BIC are maximized at |J | = 3 (with five

groups, the EM algorithm did not converge after 1,000 iterations). I use modal assignment

to impute individuals’ trajectory-group membership. Figure 2 summarizes pre-treatment-

period histories of delinquent behavior for members of the three groups. The group-specific

trends are similar to those reported in Haviland and Nagin (2005) using entirely different

data; they label group 1 as “chronic” offenders, group 2 as “declining” offenders and group

3 as “low” offenders.28

The estimated propensity scores of .34, .35, and .32 for members of groups one, two, and

three imply that the latent-class overlap requirement is satisfied, and hence that average

causal effects are identified within latent trajectory groups. To recover these effects, I use the

estimated posterior probabilities q̂ji, j ∈ {1, . . . , |J |}, i ∈ {1, . . . , N}, of group membership to

estimate the matrices Pd, d ∈ {0, 1}, of modal assignment classification probabilities using the

sample analogs of the expression given in Proposition 1. Following Proposition 1, I form the

vector of (uncorrected) modal assignment estimates ÊYT |Ĵ ,d to recover estimates of the group-

specific average counterfactual outcomes as ÊYdT |J,d = P̂−1
d ÊYT |Ĵ ,d for d ∈ {0, 1}. Differencing

these for treated and untreated individuals produces estimates AT̂E(j) of the group-specific

28All of the group-specific trends in my data feature an initial dip not present in Haviland and Nagin
(2005); this is presumably because individuals enter my dataset after an encounter with the criminal justice
system.
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average causal effects, which I aggregate to the population and treated-population level as

AT̂E =
󰁓

j AT̂E(j)P̂ (j) and AT̂T =
󰁓

j AT̂E(j)P̂ (j|D = 1), where P̂ (j) = N−1
󰁓N

i=1 q̂ji

and P̂ (j|D = 1) =
󰁓N

i=1 q̂jiDi/(
󰁓N

i=1 Di). For the purpose of comparison, I also compute

uncorrected latent class matching estimators and naive comparisons of outcomes between

gang members and non-members.

Figure 3 provides a graphical summary of the estimated ATTs of gang membership

for shooting, robbing, beating, and fighting (Table 3 in Appendix C provides a detailed

summary of the estimates). With the exception of shooting, the naive estimates exceed the

uncorrected trajectory-group matching estimates, which themselves exceed the corrected

matching estimates. Although these differences are not statistically significant (presumably

because of the modest sizes of the sample and treatment group), this pattern is consistent

with the notion that those with a greater inherent propensity for delinquency self-select into

gang membership, and that the corrected matching estimator does a better job of controlling

for this than the uncorrected estimator.

Figure 4 summarizes trajectory-group-specific average causal effects estimated by uncor-

rected and corrected latent trajectory-group matching. Focusing on the fighting outcome

(for which the estimated ATT is significantly different from zero), the figure suggests that

the uncorrected modal assignment estimator may misstate the group-specific causal effects

considerably. For example, the group-2 corrected matching point estimate lies outside the

95% confidence interval for the uncorrected estimate.
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confidence intervals.
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Figure 4: Estimated trajectory-group-specific effects of gang-membership on violent delin-
quency. Bars show 95% confidence intervals.
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6 Conclusion

The methods developed in this paper extend non- and semi-parametric matching and propensity-

score reweighting methods to settings where counterfactual outcomes are independent of

treatment status conditional on observed covariates and membership in latent classes. Un-

like difference-in-differences matching and reweighting, these methods place no restrictions

on the relationship between counterfactual outcomes and the unobserved variables that in-

fluence treatment status. They do, however, require specification and identification of a

finite-mixture model that relates a set of observed auxiliary variables to latent class mem-

bership. The latent-class matching and reweighting estimators motivated by this approach,

which circumvent estimating the distributions of counterfactual outcomes, are computation-

ally attractive and perform well in Monte Carlo studies.

The use of finite-mixture models to identify and estimate causal effects in the presence

of unobserved heterogeneity shows promise; this literature calls for advancement. New iden-

tification results for mixture models, and refined ways of estimating them, will expand the

circumstances under which we can use those models to conduct causal inference in the pres-

ence of unobserved heterogeneity.
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A Proofs

Proof of Proposition 1. Modal assignment methods impute counterfactual outcomes using

(10), which can be expressed via the law of total expectation as

E(Yt|Dt = dt, Xt = xt, Ĵ = j) =

|J |󰁛

k=1

E(Yt|dt, xt, Ĵ = j, J = k)P (J = k|dt, xt, Ĵ = j). (16)

Conditional on Dt = dt, observed outcomes Yt can be replaced with counterfactual outcomes

Ydt in the right-hand side of (16). Because counterfactual outcomes are independent of

treatment status conditional on Xt and J under Assumption 1, the condition that Dt = dt

can be dropped from the right-hand-side expectations. Furthermore, because counterfactual

outcomes are also independent of (Z,W ) conditional on Xt and J under Assumption 2,

the condition that Ĵ = j, which is a function of (Z,W ), can also be excluded from these

expectations. This shows that the modal assignment method identifies a weighted average

of latent-class specific causal effects:

E(Yt|Dt = dt, Xt = xt, Ĵ = j) =

|J |󰁛

k=1

E(Ydt|xt, J = k)P (J = k|dt, xt, Ĵ = j). (17)

Stacking (17) for different values of j ∈ {1, . . . , |J |} gives

EYt|Ĵ ,dt,xt
= Pdt,xtEYdt|J,xt ,

which proves the first part of the proposition.

To prove the second part, note that the probability that an observation belongs to class

k conditional on covariates Xt, treatment status Dt, and modal assignment into class j, can

be expressed as

P (J = k|xt, dt, Ĵ = j) =
P (J = k, Ĵ = j|dt, xt)

P (Ĵ = j|dt, xt)

=

󰁓
z,w P (J = k|Ĵ = j, z, w)P (Ĵ = j|z, w)P (z, w|dt, xt)

P (Ĵ = j|dt, xt)

=

󰁓
z,w P (J = k|z, w)1(Ĵ = j)P (z, w|dt, xt)

P (Ĵ = j|dt, xt)

= E

󰀣
qk1(Ĵ = j)

P (Ĵ = j|dt, xt)

󰀏󰀏󰀏󰀏dt, xt

󰀤
,

(18)
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where 1(·) is the indicator function and the sums run over the support supp(Z,W ) of the joint

distribution of Z and W . The second equality in (18) follows because (Dt, Xt) is an element

of (Z,W ) under Assumption 2. The third follows because Ĵ is a deterministic function of

(Z,W ). The fourth follows from the definition of qk.

Proof of Proposition 2. Under Assumptions 1 and 2, (11) can be written

E

󰀕
Ytqj

P (J = j|dt, xt)

󰀏󰀏󰀏󰀏dt, xt

󰀖
=

󰁛

z,w

E

󰀕
Ytqj

P (J = j|dt, xt)

󰀏󰀏󰀏󰀏z, w, dt, xt,

󰀖
P (z, w|dt, xt)

=
󰁛

z,w

󰀣
󰁛

k

qjE(Ydt|J = k, z, w, dt, xt)

P (J = j|dt, xt)
P (J = k|z, w, dt, xt)

󰀤

× P (z, w|dt, xt)

=
󰁛

k

󰀣
󰁛

z,w

qjqkP (z, w|dt, xt)

P (J = j|dt, xt)

󰀤
E(Ydt|J = k, xt),

(19)

where (z, w) ∈ supp(Z,W ). The second equality in (19) uses the law of total expectation, the

fact that observed outcomes Yt can be replaced with counterfactual outcomes Ydt conditional

on treatment status Dt = dt, and the fact that qj is a function of (Z,W ). The third equality

follows from Assumptions 1 and 2, under which counterfactual outcomes are independent of

Dt and (Z,W ) conditional on Xt and J .

In addition, the expected proportional assignment of a member of class j into class k is

E[P (J = k|Z,W )|J = j, dt, xt] =
󰁛

z,w

E[P (J = k|z, w)|J = j, z, w, dt, xt]P (z, w|J = j, dt, xt)

=
󰁛

z,w

P (J = k|z, w)P (J = j|z, w, dt, xt)P (z, w|dt, xt)

P (J = j|dt, xt)

= E

󰀕
qjqk

P (J = j|dt, xt)

󰀏󰀏󰀏󰀏dt, xt

󰀖
,

(20)

where I have used the facts that the qj are functions of (Z,W ) and that (Dt, Xt) is an element

of (Z,W ) under Assumption 2.

Together, (19) and (20) imply that EYtqJ |dt,xt = Qdt,xtEYdt|J,xt , and the conclusion follows.

Proof of Proposition 3. To prove the first part, note that the time-t mean counterfactual
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outcomes satisfy

E(Ydt) = E

󰀣
󰁛

j

E(Ydt|Xt, j)P (j|Xt)

󰀤

= E

󰀥
󰁛

j

󰁛

k

A−1
dt,Xt

(j, k)E

󰀕
Ytak

E(ak|Xt, dt)

󰀏󰀏󰀏󰀏Xt, dt

󰀖
P (j|Xt)

󰀦

= E

󰀥
E

󰀣
󰁛

j

󰁛

k

A−1
dt,Xt

(j, k)
Ytak

E(ak|Xt, dt)
P (j|Xt)

󰀏󰀏󰀏󰀏Xt, dt

󰀤󰀦

= E

󰀥
E

󰀣
󰁛

j

󰁛

k

A−1
dt,Xt

(j, k)
Ytak1(Dt = dt)

E(ak|Xt, dt)

P (j|Xt)

P (dt|Xt)

󰀏󰀏󰀏󰀏Xt

󰀤󰀦

= E(Ytωdt),

where the second equality follows from Propositions 1 and 2, the third follows because Adt,Xt

and P (j|Xt) are functions of Xt, the fourth from the law of total probability, and the fifth

from the law of iterated expectations.

For the second part, clearly E[Yt1(Dt = 1)/P (Dt = 1)] = E(Y1t|Dt = 1). Under As-

sumptions 1 and 2,

E(Y0t|Dt = 1) =
󰁛

xt

󰁛

j

E(Y0t|xt, j)P (j|xt, Dt = 1)P (xt|Dt = 1)

=
󰁛

xt

󰁛

j

E(Y0t|xt, j)P (j|xt, Dt = 1)
P (xt|Dt = 1)

P (xt)
P (xt)

= E

󰀣
󰁛

j

E(Y0t|Xt, j)P (j|Xt, Dt = 1)
P (Dt = 1|Xt)

P (Dt = 1)

󰀤

= E

󰀣
󰁛

j

󰁛

k

A−1
1,Xt

(j, k)
E(Ytak|Dt = 0, Xt)

E(ak|Dt = 0, Xt)
P (j|Xt, Dt = 1)

P (Dt = 1|Xt)

P (Dt = 1)

󰀤

= E

󰀥
E

󰀣
󰁛

j

󰁛

k

A−1
1,Xt

(j, k)
YtakP (j|Xt, Dt = 1)

E(ak|Dt = 0, Xt)

P (Dt = 1|Xt)

P (Dt = 1)

󰀏󰀏󰀏󰀏Xt, Dt = 0

󰀤󰀦

= E

󰀥
E

󰀣
󰁛

j

󰁛

k

A−1
1,Xt

(j, k)
Ytak1(Dt = 0)P (j|Xt, Dt = 1)

E(ak|Dt = 0, Xt)P (Dt = 0|Xt)

P (Dt = 1|Xt)

P (Dt = 1)

󰀏󰀏󰀏󰀏Xt

󰀤󰀦

= E(Ytω̃0t),

where xt ∈ suppXt and j, k ∈ {1, . . . , |J |}. In the above, the first three equalities follow from

basic probability calculus, the fourth from Propositions 1 and 2, the fifth because Adt,Xt and
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P (Dt = 1|Xt) are functions of Xt, and the six and seventh from the laws of total probability

and, respectively, iterated expectations.

B Large-sample distribution

Let θ denote the parameters of the finite-mixture model, β the average causal effect of interest

(either the ATE or ATT), and ω(Xt, Dt; θω, θ) the corresponding weights (that is, ω1 − ω0

for the ATE or ω̃1 − ω̃0 for the ATT), where the components θω of the weights satisfy the

moment conditions E[h(Xt, Dt; θω, θ)] = 0. For example, using the proportional-assignment

based ATE weights, h(Xt, Dt; θω, θ) is the vector consisting of

[P (j|xt)− qj(θ)]1(Xt = xt) = 0, xt ∈ suppXt, j ∈ {1, . . . , |J |− 1}

[P (j|xt, dt)− qj(θ)]1(Xt = xt)1(Dt = dt) = 0, xt ∈ suppXt, dt ∈ {0, 1},

j ∈ {1, . . . , |J |− 1}
󰀕
Qdt,xt(j, k)−

qj(θ)qk(θ)

P (j|dt, xt)

󰀖
1(Xt = xt)1(Dt = dt) = 0, xt ∈ suppXt, dt ∈ {0, 1},

j ∈ {1, . . . , |J |}, k ∈ {1, . . . , |J |− 1}

[P (Dt = 1|xt)−Dt]1(Xt = xt) = 0, xt ∈ {1, . . . , |Xt|}.

Letting m(Z,W, Yt; β, θω, θ) = (β − Ytω(θω, θ), h(Xt, Dt; θω, θ), ∂ log ℓ(Z,W |W1; θ)/∂θ),

the reweighting estimators solve the sample analog of E(m) = 0. Putting G = E(mm′)

and H = E[∂m/∂(β, θω, θ)], Proposition 4, which follows from Theorem 6.1 of Newey and

McFadden (1994, or from Newey, 1984), gives the asymptotic distribution of the treatment

effect estimators (which can be estimated by replacing H and G with their natural sample

analogs).29

Proposition 4. Let β denote the time-t ATE or ATT, and β̂ a corresponding latent-class

reweighting estimate. Under Assumptions 1 and 2,

√
N(β̂ − β)

a∼ N(0, v),

where v is the first element of H−1GH−1′.

29Although the modal assignment estimators are not differentiable because of their dependence on the
1(Ĵ = j), the result only requires differentiability in a neighborhood of the true θ0 (Newey and McFadden,
1994, Theorem 3.4), which will hold if the Ĵ are unique so that the probability limits of the estimators are
well defined. The proportional assignment estimators are differentiable everywhere.
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C Tables

Table 1: Summary of estimates for main simulation study

(a) Treatment effects

ATE ATT ATE(J=1) ATE(J=2) ATE(J=3)
J observed 5.60 5.88 4.50 5.71 6.99

(0.04) (0.04) (0.06) (0.04) (0.06)
Latent-class matching 5.61 5.88 4.57 5.39 7.32

(0.08) (0.10) (0.28) (0.84) (1.77)
Uncorrected latent-class matching 5.92 6.15 5.38 5.99 6.52

(0.05) (0.05) (0.14) (0.11) (0.13)
Observed covariate matching 5.75 5.88

(0.05) (0.05)

(b) Latent-class distribution

P(J=1) P(J=2) P(J=3)
True 0.3 0.5 0.2
Estimated 0.32 0.44 0.24

(0.04) (0.05) (0.02)

Notes—Means and standard deviations from 250 simulations. Elements of the latent-class
distribution estimated as the unconditional means of the estimated priors. Other entries are
described in the main text.
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Table 2: Summaries of additional simulations

Study 2
ATE ATT ATE(J=1) ATE(J=2) ATE(J=3)

J observed 5.40 5.63 4.50 5.50 6.50
(0.03) (0.04) (0.06) (0.04) (0.07)

Latent-class matching 5.40 5.63 4.53 4.92 7.42
(0.07) (0.09) (0.29) (2.30) (4.50)

Uncorrected latent-class matching 5.72 5.89 5.33 5.79 6.09
(0.05) (0.05) (0.12) (0.10) (0.12)

Observed covariate matching 5.70 5.79
(0.05) (0.05)

Study 3
ATE ATT ATE(J=1) ATE(J=2) ATE(J=3)

J observed 5.60 5.88 4.50 5.70 7.00
(0.04) (0.04) (0.06) (0.04) (0.06)

Latent-class matching 5.62 5.90 4.78 5.53 6.83
(0.06) (0.07) (0.19) (0.29) (0.50)

Uncorrected latent-class matching 5.93 6.15 5.56 5.99 6.29
(0.05) (0.05) (0.06) (0.05) (0.07)

Observed covariate matching 5.76 5.88
(0.05) (0.05)

Study 4
ATE ATT

J observed 5.59 5.88
(0.03) (0.03)

Latent-class matching 5.61 5.89
(0.05) (0.06)

Uncorrected latent-class matching 5.92 6.14
(0.04) (0.04)

Observed covariate matching 5.74 5.86
(0.05) (0.05)

Notes—Means and standard deviations from 250 simulations. In Study 2, the X are drawn
independently of J with mass function px = (.2, .3, .3, .2) while the finite-mixture model
allows for dependence (as in the main text). In Study 3, X and J are dependent as in the
main text, but the finite-mixture model is misspecified to assume that they are independent
and that the errors in the selection equations are logistic. In Study 4, the data are drawn as
in the main text, but the finite-mixture is misspecified to use two, rather than three, latent
classes (the results for this study are based on 100 simulations).
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Table 3: The effects of gang membership on violent behavior

Shot Rob Beat Fight
Naive 0.02 0.07 0.12 0.28

(0.12) (0.14) (0.14) (0.13)
Population ATT Uncorr’d 0.02 0.06 0.09 0.23

(0.11) (0.14) (0.11) (0.15)
Corr’d 0.02 0.05 0.08 0.22

(0.14) (0.12) (0.22) (0.14)
Corr’d - Uncorr’d 0 0 0 0.01

(0.12) (0.14) (0.14) (0.15)
Population ATE Uncorr’d 0.02 0.06 0.09 0.22

(0.14) (0.12) (0.2) (0.12)
Corr’d 0.03 0.06 0.1 0.23

(0.15) (0.11) (0.14) (0.12)
Corr’d - Uncorr’d 0 0 0 0.01

(0.15) (0.14) (0.12) (0.16)
Group ATEs 1, Uncorr’d 0.06 0.11 0.13 0.24

(0.15) (0.12) (0.11) (0.12)
2, Uncorr’d 0 0 0.06 0.19

(0.14) (0.13) (0.11) (0.1)
3, Uncorr’d 0 0.04 0.08 0.25

(0.19) (0.17) (0.11) (0.17)
1, Corr’d 0.09 0.17 0.19 0.37

(0.12) (0.15) (0.1) (0.15)
2, Corr’d -0.03 -0.06 0.01 0.09

(0.11) (0.19) (0.13) (0.13)
3, Corr’d -0.02 0 0.03 0.15

(0.15) (0.14) (0.14) (0.15)
1, Corr’d - Uncorr’d 0.03 0.06 0.06 0.13

(0.15) (0.12) (0.14) (0.13)
2, Corr’d - Uncorr’d -0.03 -0.06 -0.05 -0.1

(0.15) (0.19) (0.11) (0.17)
3, Corr’d - Uncorr’d -0.02 -0.04 -0.05 -0.1

(0.14) (0.13) (0.12) (0.13)

Notes—Standard errors based on 500 nonparametric bootstrap replications. “Naive” denotes
a simple comparison of means between treated and untreated outcomes, “Uncorr’d” denotes
the uncorrected latent-class matching estimator that compares treated and untreated units
assigned to the same group, and “Corr’d” denotes a latent-class matching estimator that
corrects for misclassifications arising in the first stage. Both latent-class matching estimators
are based on model assignment. The estimated group-specific propensity scores are .34 (.13),
.35 (.13), and .32 (.13) for members of groups one, two, and three (respectively, standard
errors in parentheses).
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