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Abstract

This paper shows that, in panel settings when the probability of receiving a treatment is low,

simple comparisons of outcomes between those who are treated in a given period and those who

are untreated in that period, but receive the treatment in some other period, approximately

identify the average effect of the treatment on the treated. Monte Carlo simulations reveal

that this approximate selection-correction substantially reduces selection bias relative to naive

comparisons of outcomes between treated and untreated units.
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1 Introduction

One of the central concerns of empirical economics is the possibility that self-selection on unob-

served characteristics introduces bias into comparisons between treated and untreated individuals,

invalidating the causal interpretation of those comparisons. This paper proposes a simple selection-

correction that can be used to approximate the Average Effect of the Treatment on the Treated

(ATT) in panel settings where the probability of receiving the treatment is low. The intuition for

this approach is that, when the probability of receiving the treatment is low, individuals who are

treated in any period are likely to differ systematically from those that never are. Consequently,

comparing outcomes for those who are treated in a given period with those who are untreated in

that period, but receive the treatment in some other period, approximates the average effect of the

treatment among the treated population.

To be clear at the outset, this approach can only approximate the ATT, and can only do so

well in panel settings where the probability of receiving the treatment is small (though it may be

a useful indicator of the direction and severity of selection bias even at moderate treatment rates).

However, in applications it is often the case that relatively few individuals receive the treatment in

any given period. Moreover, the approximate selection-correction approach is simple and intuitive,
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and can be applied absent an instrument or other source of exogenous variation in treatment status,

as well as in settings where the effect of unobserved characteristics on outcomes varies over time

(in which traditional fixed-effects methods are invalid).

In the remainder of this paper, I provide theoretical motivation for the approximate selection-

correction, illustrate its properties using a series of Monte Carlo simulations, demonstrate its ap-

plication by using it to approximate the effect of Northward migration on Southern-born blacks’

educational attainment, and conclude.

2 Approximating the ATT

Let Y1it represent the outcome that individual i ∈ {1, . . . , N} would experience at time t ∈
{1, . . . , T} if they received a binary treatment (Dit = 1), and Y0it the outcome they would ex-

perience absent the treatment (Rubin, 1974). Using this notation, i’s observed outcome can be

expressed Yit = DitY1it + (1 − Dit)Y0it, and the time-t Average Effect of the Treatment on the

Treated (ATT) can be expressed ATTt = E(Y1it − Y0it|Dit = 1). It is well known that when treat-

ment status Dit is not randomly assigned, comparisons of observed outcomes between treated and

untreated individuals identify a combination of the ATT and a bias term reflecting the possibility

that treated individuals might have experienced systematically different outcomes even absent the

treatment.

Suppose that potential outcomes (Y0it, Y1it) are independent of treatment status Dit conditional

on an unobserved time-invariant characteristic Ui.
1 Suppose also that successive realizations of Dit

are independent conditional on Ui, so that the Ui explain any serial correlation in treatment status.

In this case, conditional on Ui, the bias term vanishes, and treated-untreated outcome comparisons

identify U -specific causal effects:

E(Yit|Dit = 1, Ui)− E(Yit|Dit = 0, Ui) = E(Y1t − Y0t|Dit = 1, Ui)︸ ︷︷ ︸
ATT

+ [E(Y0t|Dit = 1, Ui)− E(Y0t|Dit = 0, Ui)]︸ ︷︷ ︸
Bias

= E(Y1t − Y0t|Dit = 1, Ui).

These strata-specific causal effects, in turn, can be aggregated according to the distribution of Ui

among the treated population to identify the overall ATT. The argument that follows can be applied

within covariate strata if potential outcomes are independent of treatment status conditional on Ui

and observed covariates Xit.

This approach to identification is infeasible when Ui is unobserved. However, consider approxi-

mating the Ui by a binary variable Qi ∈ {l, h} with mass function P (Qi = h) = π and satisfying the

restriction that plt = P (Dit = 1|Qi = l) = 0 for all t. In other words, approximate the unobserved

heterogeneity by assuming that there are two types of individuals: those that will never receive the

1The time-invariance assumption is for simplicity and can be relaxed.
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treatment and those that might.2

Under this approximation, some individuals can be identified as members of group h with

probability one. To see this, let Di = 1
(∑T

t=1Dit > 0
)

be an indicator for whether individual

i ever receives the treatment, and let pht = P (Dit = 1|Qi = h) denote the probability that an

individual belonging to group h receives the treatment at time t. The probability that an individual

who ever receives the treatment belongs to group h is therefore simply

P (Qi = h|Di = 1) =
π
[
1−

∏T
t=1(1− pht)

]
π
[
1−

∏T
t=1(1− pht)

]
+ (1− π)

[
1−

∏T
t=1(1− plt)

] = 1.

Furthermore, the average effect of the treatment on the treated can be approximated as

ATTt =

∫
E(Y1it − Y0it|Dit = 1, Ui = u)dP (Ui = u|Dit = 1)

=

∫
[E(Yit|Dit = 1, Ui = u)− E(Yit|Dit = 0, Ui = u)]dP (Ui = u|Dit = 1)

≈
∑

q∈{l,h}

[E(Yit|Dit = 1, Qi = q)− E(Yit|Dit = 0, Qi = q)]P (Qi = q|Dit = 1)

= E(Yit|Dit = 1, Di = 1)− E(Yit|Dit = 0, Di = 1).

In summary, under the two-type approximation described above, the time-t ATT is the same

as the average effect of the treatment for group h, and can therefore be identified by comparing

treated and untreated outcomes at time t, among those who receive the treatment in any period.

Of course, the usefulness of this approach to identification depends on the quality of the approxima-

tion that it provides to the underlying ATT, which may be poor if the effects of, and likelihood of

receiving, the treatment are very heterogeneous.3 However, the lower the probabilities P (Dit = 1),

t ∈ {1, . . . , T}, of receiving the treatment are, the better this approximation will be. This is be-

cause when there is meaningful unobserved heterogeneity in treatment probabilities but the overall

population probability is low, it must be the case that a large proportion of the population receives

the treatment with near-zero probability.4 Although this approximation argument is necessarily

heuristic, I illustrate it with evidence from Monte Carlo simulations in the next section.

2In the terminology of Angrist, Imbens and Rubin (1996), this approximation separates the never-takers from the
compliers, defiers, and always-takers.

3As I note in the appendix, this approximate selection-correction approach can also be viewed as an approximation
to a formal latent-class analysis (see Leisch, 2004, for an introduction).

4E.g., consider a two-type model where a fraction π of the population enroll with probability ph and (1−π) enroll
with probability pl < ph. In broad terms, a small population probability p = P (Dit = 1) = πph + (1 − π)pl implies
that either pl ≈ 0 and ph ≈ p/π > p or pl ≈ ph ≈ p. In the latter case, unobserved heterogeneity would not introduce
much selection bias, however, so only the former case is of interest here.
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3 Monte Carlo simulations

I perform a number of Monte Carlo simulations to illustrate the properties of the approximation

developed above. In each simulation, the data are generated by the following processes:

Y0it = bXit + Ui + e0it Y1it = Y0it + bXit + Ui + e1it

Dit = 1(Y1it − Y0it > c) Yit = DitY1it + (1−Dit)Y0it.

I chose these processes to introduce selection bias into naive comparisons between treated and

untreated individuals. In each simulation, the Xit are drawn from a standard normal distribution,

and I vary the distributions from which the Ui, e0it and e1it are drawn, as well as the coefficient b

on the observed covariate Xit, and the enrollment threshold c, as described below.

For each configuration, I simulate 1000 datasets consisting of observations on (Y0it, Y1it, Yit, Dit, Xit)

for i ∈ {1, . . . , 1000} and t ∈ {1, . . . , 5}. For each simulate, I compute the sample average ATT as

the sample analog of E(Y1it − Y0it|Dit = 1), a naive estimate of the ATT as the coefficient on Dit

from a regression of Yit on Dit and Xit, and an approximately selection-corrected estimate of the

ATT as the coefficient on Dit from the same regression estimated using the sample of individuals

who ever receive the treatment. Note that the first of these objects can only be computed in a

simulation setting where both treated and untreated outcomes are observed. Because the environ-

ment is stationary, I only report results for the final period. I summarize the simulation results

graphically in Figure 1 and numerically in Table 1.5

In simulations (1)–(8), the (e0it, e1it) are drawn from independent standard normal distributions.

For the first four of these simulations, I set the enrollment threshold c equal to 2.6 As the row

labelled “Rate” in Table 1 shows, this generates population-average treatment probabilities of about

10% (per period). In simulation (1), I draw the Ui from a standard normal distribution and set

the coefficient b on the observed covariate Xit to .1. The results are summarized in the first panel

of Figure 1 and the first column of Table 1. A naive regression of observed outcomes on treatment

status and the observed covariate overstates the average effect of the treatment on the treated

considerably. In contrast, the approximately selection-corrected estimates are much closer to the

true ATT, with the correction eliminating an average of about 73% [=(4.07-3.03)/(4.07-2.64)] of

the bias present in the naive estimate.

To illustrate the impact of observed heterogeneity on the quality of the approximation, in

simulation (2) I set b = 1. As the row labelled “R sq.” in Table 1 shows, this increases the average

R2 from a regression of Dit on Xit from nearly zero to about .13. This additional source of variation

in the probability of enrollment decreases the quality of the approximate selection-correction, which

now eliminates an average of about 60% of the bias in the naive regression estimates. This pattern

suggests that, when observed covariates matter, the approximate selection-correction should be

5In the plots in Figure 1, the bold lines represent the medians, the boxes represent the interquartile range, and
the “whiskers” represent the minimum and maximum estimates (with outliers excluded according to R’s default
algorithm).

6I chose this threshold because it was a whole number that generated a reasonably low treatment probability.
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applied within observed strata.

For simulations (3) and (4), I repeat the analysis of simulations (1) and (2), drawing the

Ui ∈ {−1, 1} from an equiprobable binary distribution. The results show that the two-type selection

correction provides a much better approximation to the true ATT when there is less variation in the

underlying unobserved heterogeneity. Although the empiricist is unlikely to have prior information

about such heterogeneity, these results illustrate the theoretical underpinnings of the approximation

approach developed here.

To show how the quality of the approximate selection-correction varies with the probability of

receiving the treatment, in simulations (5)-(8) I recreate simulations (1)-(4) with a lower enrollment

threshold of c = 1, generating average treatment probabilities of about 25%. Consistent with the

reasoning above, the performance of the approximate selection-correction declines as the probability

of enrollment increases. In simulation (5), for example, the approximate correction only eliminates

about half of the bias from the naive regression. Nevertheless, simulations (5)-(8) suggest that the

approximate correction may be useful even at moderate treatment probabilities as an indicator of

the direction and potential severity of bias due to selection on unobservables.

In simulations (9)–(10), I assess the sensitivity of the correction to the distribution from which

the errors (e0it, e1it) are drawn. For brevity, these simulations use continuous Ui, set b = .1, and use

enrollment thresholds that generate treatment rates close to 10% (unreported results from other

configurations are similar). In simulation (9), these errors are drawn from independent lognormal

distributions (i.e., the logs of the errors are standard normal). Though there is less absolute

selection bias in this setting (and more variation in the ATT), the selection correction removes

over 90% of the bias that remains. In simulation (10), the errors are drawn from independent t

distributions with five degrees of freedom. The fatter tails of this distribution increase the variance

of the estimated true, naive, and corrected ATTs, which are otherwise similar to the normal case.

4 Application: The effect of the Great Migration on educational

attainment

The African American Great Migration, during which millions of blacks left their birthplaces in the

Southern US in favor of cities in the North, is thought to have had wide-reaching consequences for

black-white relative economic progress in the 20th-century (see Tolnay, 2003, for a review). How-

ever, the possibility that the Great Migrants and their descendants were a select group that might

have also experienced better socioeconomic outcomes in the South calls the casual interpretation

of comparisons between migrants and non-migrants into question. To illustrate its application,

I use the approximate selection-correction to estimate the effect of Northward migration on the

educational attainment of migrants’ children. My analysis draws on the Three-Generation Survey

of Black American Families (Jackson and Tucker, 1997), an intergenerational dataset that reports
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socioeconomic outcomes and state of birth for three generations of a number of black families.7

The method developed in this paper is appropriate for this question for several reasons. First,

to the extent that family-specific unobserved characteristics affect the educational attainment of

parents and their children, they likely do so differently over time, violating the assumptions of

fixed-effects methods. Second, the fractions of Southern-born individuals who migrated North are

relatively small (e.g., only about 12% of second generation respondents whose parents were born

in the South were themselves born in the North). Third, there are few clearly predetermined

explanatory variables and no obviously exogenous sources of variation in migration with which to

implement traditional regression or instrumental variables methods.

Table 2 presents the results. The first column reports estimates of a naive regression of ed-

ucational attainment in years on indicators for being Northern-born and for being male among

second-generation respondents whose parents were born in the South. The sample of second-

generation respondents is used for comparability with the selection correction, which can only be

implemented with that sample.8 The coefficient on Northern-born implies an estimated ATT of

about 2 years. The second column reports approximately selection-corrected results from the same

regression, estimated using a sample of second-generation respondents whose parents were born in

the South but belonging to families that ever migrated to the North. Consistent with the notion

that migrants and their children are positively selected on education, the implied ATT is lower,

at about 1.16. For comparison, columns (3) and (4) report (family) fixed-effects estimates from

pooled samples obtained using all three generations and only generations two and three. The im-

plied ATTs of 3.58 and 1.29 exceed the approximate selection-corrected estimates, suggesting that

a fixed-effects specification is inadequate in this intergenerational setting.

5 Conclusion

This paper shows that, in panel settings when enrollment is selective, the ATT can be approx-

imated using outcomes comparisons between treated and untreated units among the population

that receives the treatment in any period. Monte Carlo simulations reveal that this approximate

selection-correction can substantially reduce the bias present in naive comparisons of outcomes

between treated and untreated individuals, particularly when the treatment probability is low, and

may be useful as an indicator of the direction and severity of selection bias even when the treatment

probability is modest. An application of this method suggests that, while Northward migration

increased Southern-born blacks’ educational attainment, naive comparisons of education between

the children of migrants and non-migrants overstate this effect.

7I exclude observations for which the first-generation member of the family was born in a Northern state. Through-
out my analysis, I use the Census Bureau’s definition of the North and South. To account for the possibility that
Southern-born members of the third generation (who are the youngest in the sample) might have migrated North
after they were interviewed, I exclude third-generation respondents who were 18 or younger at the time of the survey.

8The data do not identify the birthplaces of first-generation respondents’ parents, and the lack of return migration
means that third-generation members of families who ever migrate North, but whose second-generation parents were
Southern-born, must themselves be Northern-born.
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A Relationship to latent-class analysis

This approximate selection-correction approach can also be viewed as an approximation to a formal

latent-class analysis, in which individuals are assumed to belong to one of a finite number of

latent classes, the latent-class distribution and class-specific treatment probabilities are chosen to

maximize the sample log-likelihood, the number of classes is chosen to maximize either the Bayesian

or Akaike Information Criterion, and individuals are assigned to latent classes according to their

probabilities of membership in each class, conditional on their observed characteristics (see Leisch,

2004, for an introduction). The advantages of the approximate approach include its conceptual

and computational simplicity and the fact that it can be applied with only two time periods (while

formal latent-class models are not identified with fewer than three periods, see Allman, Matias and

Rhodes 2009).9

9Though latent-class analysis can be applied regardless of the treatment probabilities, when those probabilities are
high, latent-class membership will be harder to identify from the sequences of treatment decisions, and treatment effect
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Figure 1: Distributions of ATTs from 1000 simulations. See main text for description.
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Table 1: Means and standard deviations from 1000 simulations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

True 2.64 2.86 2.53 2.81 1.83 2.08 1.78 2.06 6.79 2.83
(0.07) (0.07) (0.05) (0.06) (0.04) (0.05) (0.04) (0.05) (0.4) (0.09)

Naive 4.07 4.08 3.59 3.93 3.04 3.18 3.02 3.22 7.28 3.77
(0.17) (0.16) (0.13) (0.13) (0.11) (0.12) (0.09) (0.1) (0.46) (0.17)

Corrected 3.03 3.35 2.53 3.02 2.39 2.65 2.02 2.57 6.89 2.9
(0.19) (0.18) (0.14) (0.15) (0.12) (0.13) (0.11) (0.12) (0.47) (0.19)

R sq. 0 0.13 0 0.14 0 0.19 0 0.18 0 0
(0) (0.02) (0) (0.02) (0) (0.02) (0) (0.02) (0) (0)

Rate 0.08 0.12 0.08 0.13 0.24 0.28 0.26 0.29 0.09 0.1
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Threshold 2 2 2 2 1 1 1 1 4 2
Het. type Cts Cts Binary Binary Cts Cts Binary Binary Cts Cts
b 0.1 1 0.1 1 0.1 1 0.1 1 0.1 0.1
Error distn. N N N N N N N N LN(0,1) t(5)

Notes—“Threshold” is the assumed value of c. “Het. type” indicates whether the U are drawn
from a continuous (“Cts”) or equiprobable binary (“Binary”) distribution. “b” is the coefficient
on the observable X. “Error distn.” indicates whether the (e0, e1) are drawn from normal (“N”),
lognormal (“LN”), or t distributions with five degrees of freedom (“t(5)”).

Table 2: The effect of parental migration on educational attainment

Naive Corr’d FE (all) FE (gen. 2 & 3)

Intercept 10.51∗∗∗ 11.56∗∗∗ 9.47∗∗∗ 11.35∗∗∗

(0.21) (0.41) (2.16) (2.02)
Northern-born 1.99∗∗∗ 1.16∗ 3.58∗∗∗ 1.29∗∗

(0.53) (0.56) (0.45) (0.50)
Male −0.84∗ −1.45∗ 0.40 0.30

(0.38) (0.57) (0.30) (0.31)

R2 0.05 0.10 0.36 0.53
Num. obs. 348 101 1044 696

Notes—Regressions of educational attainment in years on sex and an indicator for being born in
the North among second-generation respondents with Southern-born parents. “Corr’d” denotes
estimates obtained using the sample of families that ever migrate to the North. “FE” denotes a
regression with family fixed effects (using either the entire sample or only members of the 2nd and
3rd generations). ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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estimates obtained by comparing treated and untreated units assigned to the same classes will be ridden with greater
classification error (this problem can be solved by modeling observed outcomes along with the treatment decisions, or
by correcting for the resulting classification errors; see Bock, Croon and Hagenaars 2004). At lower treatment rates,
the approximate and formal latent-class methods produce similar estimates (as unreported simulation results show).
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