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Abstract

This paper develops a framework for estimation and inference to analyze the
effect of a policy or treatment in settings with treatment effect heterogeneity and
variation in treatment timing. We propose a two-stage estimator that compares treated
and untreated outcomes after removing group and period effects identified from a
regression using untreated observations. Our regression-based approach enables us
to conduct inference within a conventional GMM asymptotic framework. It easily
facilitates fairly standard extensions such as estimating dynamic treatment effects and
triple differences; incorporating time-varying controls, individual unit fixed effects, and
different approaches to testing parallel trends; and considering violations of the parallel
trends assumption. To understand the finite sample properties of our estimator, we
conduct simulations of randomly generated laws in state-level wage data, extending
the “placebo law” analysis of Bertrand, Duflo and Mullainathan (2004) to a setting
with heterogeneous treatment effects and staggered treatment timing. Our method
outperforms alternative approaches for estimation and inference based on precision
and rejection rates. Even with homogeneous treatment effects, our approach yields
similar standard errors as two-way fixed effects regressions, unlike other proposed
heterogeneity-robust estimators. Across seven empirical applications, we compare
the relative performance of the different methods by analyzing the rate of extreme
𝑡-statistics and outlying standard errors relative to one another. Our two-stage approach
thus stands out as a practical choice for applied researchers.
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1 Introduction

Difference-in-differences (DD) estimation has emerged as an indispensable tool for empirical
researchers seeking to evaluate the impact of a given intervention or policy. Its appeal stems
in part from the conceptual simplicity of comparing changes in outcomes for groups affected
by an intervention to changes for unaffected groups. A potential reason for the widespread
use of two-way fixed-effects (TWFE) in settings with multiple groups and time periods is
a presumption that it should identify the average effect of the treatment on the treated.
Although this intuition is accurate when the heterogeneous treatment effects are distributed
identically across groups and periods (a condition that is automatically satisfied in the classic
two-group, two-period setting), it does not hold in general. When these distributions are not
identical, conditional mean outcomes are no longer linear in group, period, and treatment
status, causing the TWFE regression model to be misspecified for conditional mean outcomes,
and thus it is unable to identify the average treatment effect on the treated.

This paper develops a two-stage regression-based approach to identification that is robust
to treatment-effect heterogeneity when adoption of the treatment is staggered over time.
The first stage regresses outcomes on group and period fixed effects using the subsample of
untreated observations. The second stage subtracts the estimated group and period effects
from observed outcomes and regresses the resulting residualized outcomes on treatment status.
Under the usual parallel trends assumption, this procedure identifies the overall average
effect of the treatment on the treated (i.e., across groups and periods), even when average
treatment effects are heterogeneous over groups and periods. This approach preserves the
intuition behind identification in the two-group, two-period case: it recovers the average
difference in outcomes between treated and untreated units, after removing group and period
effects. Furthermore, we demonstrate how to extend this approach to recover a variety of
treatment effect measures, including event-study analyses of pre-trends and duration-specific
average treatment effects.

We derive the asymptotic distribution of the treatment effect estimates by interpreting
the two-stage procedure as a joint GMM estimator. The two-stage estimator, along with
valid asymptotic standard errors, can thus be implemented easily using standard statistical
software, with little programming or computational time beyond that required to estimate a
regression.1 Our approach to estimation and inference can be extended to a variety of settings.
This includes estimating individual fixed effects or any linear combination of coefficients in

1This contrasts with alternative approaches that rely on bootstrapping for inference (e.g., de Chaisemartin
and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021). We provide example Stata syntax that shows how
to implement the two-stage difference-in-differences approach (with valid asymptotic standard errors) via
GMM in Appendix A; also see the did2s Stata and R packages (Butts, 2021).
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the regression model, as well as accommodating time-varying covariates. We also discuss how
to extend our approach to settings with partial violations of the parallel trends assumption,
continuous treatments, triple differences, and design-based settings.2

To evaluate the performance of our proposed estimator, we conduct simulations of randomly
generated laws using state-level wage data. This builds on the seminal work of Bertrand,
Duflo and Mullainathan (2004), extending their analysis to a setting with heterogeneous
treatment effects and staggered treatment timing. In particular, we analyze the performance
of various DD estimators with randomly drawn treated states, their associated years of
passage, and treatment effects. Using a 42-year panel, we compare the rejection rates
at the 5 percent significance level from recently proposed heterogeneity-robust estimators
(Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; Wooldridge, 2021; Borusyak, Jaravel
and Spiess, 2024; de Chaisemartin and d’Haultfoeuille, 2024).3 The simulations highlight
the value of our approach to estimation and inference by demonstrating its finite-sample
performance. Our estimator consistently offers the best performance in terms of rejection
rates, computational speed, and efficiency. This holds even in comparison with the imputation
approach from Borusyak, Jaravel and Spiess (2024) that provides identical point estimates to
ours with different variance estimators.4 We obtain similar results using independent and
identically distributed data. Furthermore, we document these advantages even in cases with
homogeneous treatment effects. In such cases, our method yields comparable standard errors
to the TWFE estimator, while other heterogeneity-robust estimators tend to yield much
larger standard errors.

We compare the relative performance of the different estimators across seven empirical
applications. In these applications, unlike in the simulation environment, the “true” treatment
effects remain unknown. This mirrors the challenge empirical researchers face, where the
choice of estimator can potentially influence their conclusions. In such situations, a method
that produces fewer outliers or inconsistencies relative to the alternatives reduce the potential
for skewed results. Our approach consistently provides stable conclusions across the empirical
applications, with the lowest rate of extreme 𝑡-statistics and the fewest outlying standard
errors relative to the other estimators. In contrast, the Callaway and Sant’Anna (2021)

2Our approach to inference accommodates design-based sources of uncertainty. As Abadie et al. (2020)
emphasize, the design-based perspective provides a coherent interpretation for standard errors, particularly
for empirical settings where the source of randomness is known.

3Our analysis does not include the local projections approach (Dube et al., 2023) due to its lack of a
theoretical framework for inference.

4The “imputation” estimator, which first appears in Borusyak, Jaravel and Spiess (2021), is numerically
identical to the two-stage estimators initially proposed by Gardner (2020), Thakral and Tô (2020), and Liu,
Wang and Xu (2019). However, they develop a different asymptotic theory, resulting in an asymptotically
conservative default variance estimator and a leave-one-out modification which they show results in improved
finite-sample performance.

2



estimator yields large standard errors with a large number of treatment cohorts (e.g., Bailey
and Goodman-Bacon, 2015; Deryugina, 2017), while the Sun and Abraham (2021) and
de Chaisemartin and d’Haultfoeuille (2024) estimators perform relatively poorly with a
relatively large number of small cohorts (e.g., Bailey and Goodman-Bacon, 2015; Deryugina,
2017).

Our work adds to an emerging body of research highlighting limitations of the traditional
TWFE approach for DD estimation in the presence of staggered treatment timing and
when the effects of a treatment vary across groups and time.5 We motivate our approach by
elucidating how misspecified TWFE regression models project heterogeneous treatment effects
onto treatment status, group effects, and period fixed effects. The simple observation that
untreated outcomes are linear in group and period effects under parallel trends then naturally
leads to our proposed two-stage method. Several papers provide alternative representations
of the TWFE estimand. Borusyak, Jaravel and Spiess (2024) show that TWFE identifies a
regression-weighted mean of the average effect of the treatment in each post-treatment period,
and de Chaisemartin and d’Haultfoeuille (2020) show that all TWFE regression estimates
(which include DD regressions as a special case) identify weighted averages of group- and
period-specific average treatment effects. Since the weights in both of these representations
can be negative, interpreting the TWFE estimand becomes challenging. Goodman-Bacon
(2021) further shows that the TWFE estimate represents a weighted average of all two-group,
two-period differences in differences, which under parallel trends identifies a combination of
weighted averages of group×period-specific average treatment effects and changes over time
in those effects. These decomposition results tend to motivate alternative methodologies
based on manually averaging cohort-specific average treatment effects (de Chaisemartin and
d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021; Sun and Abraham, 2021).

In the presence of staggered treatment adoption, several alternatives to the TWFE
regression approach exhibit robustness to heterogeneity across groups and periods. One
alternative, as mentioned earlier, is to estimate separate average treatment effects for each
group and period, which can then be aggregated to form measures of the overall effect of
the treatment.6 In comparison to this approach, our regression-based methodology offers
simplicity in estimation and inference, significant computational speed advantages, and strong
finite-sample performance. In addition, our approach retains the efficiency advantages pointed

5See, for example, de Chaisemartin and d’Haultfoeuille (2020); Goodman-Bacon (2021); Imai and Kim
(2021); Sun and Abraham (2021); Athey and Imbens (2022); Borusyak, Jaravel and Spiess (2024).

6Gibbons, Suárez Serrato and Urbancic (2018) suggest an approach like this for fixed effects models;
Borusyak, Jaravel and Spiess (2024) suggest such a solution for DD models in which the duration-specific
effects of the treatment are identical across groups, as do Callaway and Sant’Anna, 2021 for the case when
treatment effects vary by group and duration and Sun and Abraham, 2021 in the event-study context.
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out by Borusyak, Jaravel and Spiess (2024). We also discuss how to mitigate bias from
violations of parallel trends by using an appropriate subset of untreated observations in the
first stage.

Alternative regression-based approaches include the “stacked” difference-in-differences
(see, e.g., Gormley and Matsa, 2011; Deshpande and Li, 2019; Cengiz et al., 2019; Dube et al.,
2023), which attempts to transform the staggered adoption setting to a two-group, two-period
design (in which difference in differences identifies the overall average effect of the treatment
on the treated) by stacking separate datasets containing observations on treated and control
units for each treatment cohort, and the extended TWFE approach (Wooldridge, 2021).
Several limitations arise when applying these methods. First, the stacked estimator identifies
a particular weighted average of group-specific average treatment effects that depends on
arbitrary features of the data, making the resulting estimate more challenging to interpret.7

Second, implementing the stacked approach requires defining a fixed event time window
and ensuring a balanced panel throughout this period. Third, stacking involves using the
same control groups across different stacked datasets but lacks a theoretical framework for
inference. Finally, the extended TWFE approach only considers time-invariant covariates
and assumes a linear relationship between covariates and treatment effects. Our method
overcomes these issues by delivering clear and interpretable estimates, providing a theoretical
framework for inference, and allowing for flexible implementation across various contexts,
including those with time-varying covariates that interact arbitrarily with treatment effects.

Given the multitude of alternative approaches for DD estimation, our simulation and
empirical exercises constitute a distinct contribution to this literature. Our simulation exercises
present a novel and systematic comparison of standard errors and rejection rates across
different estimators in staggered adoption settings based on typical empirical applications.
Our empirical exercises complement recent work by Chiu et al. (2023), which reanalyzes a
set of political science publications that estimate TWFE regressions. They emphasize that
TWFE estimates correlate strongly with the estimates from alternative methods but find that
the latter tend to be less precise. Under homogeneous treatment effects, as our simulation
results demonstrate, our proposed two-stage method achieves the closest standard error to
that of a TWFE estimator that imposes a null effect in the pre-treatment periods.8 As our
method for achieving robustness to treatment-effect heterogeneity entails minimal efficiency
loss in settings where TWFE provides an unbiased estimate, it offers arguably the most
compelling alternative to the TWFE approach in practice.

7The weights depend on the relative sizes of the group-specific datasets and the variance of treatment
status within those datasets, as Appendix E shows.

8As a result, our proposed estimator results in greater precision than the fully dynamic event-study
specification using TWFE.
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The paper proceeds as follows. In Section 2, we introduce the main idea in a simple
setting with group and period fixed effects and without covariates. We provide intuition
for why the TWFE approach to DD estimation may not identify the average effect of the
treatment on the treated and show how our proposed two-stage regression-based approach is
robust to treatment-effect heterogeneity in settings with variation in treatment timing. While
Section 3 presents theoretical results in a more general setting that can include covariates
and individual fixed effects, applied readers may benefit more from Sections 4 and 5, which
demonstrate the performance of the two-stage approach compared to alternative proposals in
simulations and empirical applications. We conclude in Section 6.

2 Motivating the two-stage approach in a simplified
setting

2.1 The problem with difference-in-differences regression

Difference-in-differences (DD) research designs attempt to identify the causal effects of
treatments under the parallel or common trends assumption. This assumption asserts
that, absent the treatment, treated units would experience the same change in outcomes as
untreated units. Mathematically, this amounts to the assumption that average untreated
potential outcomes decompose into additive group and period effects. Let 𝑖 index units (e.g.,
states or, with microdata, individuals) and 𝑡 index calendar time (often years). Further,
partition units and time into treatment groups 𝑔 ∈ {0, 1, … , 𝐺} and periods 𝑝 ∈ {0, 1, … , 𝑃}
defined by the adoption of the treatment among successive groups, so that members of group
0 are untreated in all periods, only members of group 1 are treated in period 1, members of
groups 1 and 2 are treated in period 2, and so on. Let 𝑌𝑔𝑝𝑖𝑡, 𝑌𝑔𝑝𝑖𝑡(𝑑 = 1) and 𝑌𝑔𝑝𝑖𝑡(𝑑 = 0)
denote the observed, treated, and untreated potential outcomes for the 𝑖th member of group 𝑔
during time 𝑡 of period 𝑝, let 𝐷𝑔𝑝 be an indicator for whether members of group 𝑔 are treated
in period 𝑝, and let 𝛽𝑔𝑝 = 𝔼[𝑌𝑔𝑝𝑖𝑡(𝑑 = 1) − 𝑌𝑔𝑝𝑖𝑡(𝑑 = 0) ∣ 𝑔, 𝑝] denote the average causal
effect of the treatment for members of 𝑔 in 𝑝.9 Assume for simplicity that the treatment
is both irreversible and unanticipated (though these assumptions can be at least partially
relaxed, as detailed in Section 3.3). Under parallel trends, mean outcomes satisfy

𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] = 𝜆𝑔 + 𝛼𝑝 + 𝛽𝑔𝑝𝐷𝑔𝑝. (1)

9These expressions implicitly hold treatment times fixed at their observed values. Causal effects for the
never-treated group may be normalized to zero.
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The idea behind differences in differences is to eliminate the permanent group effects
𝜆𝑔 and secular period effects 𝛼𝑝 in order to identify the average effect of the treatment. In
the classic setup, there are only two periods (pre and post) and two groups (treatment and
control). In this setting, within-group differences over time eliminate the group effects and
within-period differences between groups eliminate the period effects. Hence the between-
group difference in post-pre differences (i.e., the difference in differences) identifies the average
effect of the treatment for members of the treatment group during the post-treatment period.

The two-period, two-group difference-in-differences estimate can be obtained using a
regression of outcomes on group and period fixed effects and a treatment-status indicator:

𝑌𝑔𝑝𝑖𝑡 = 𝜆𝑔 + 𝛼𝑝 + 𝛽𝐷𝑔𝑝 + 𝜀𝑔𝑝𝑖𝑡. (2)

It follows from Equation (1) that the coefficient on 𝐷𝑔𝑝 in Equation (2) identifies the average
effect of the treatment on the treated, 𝔼[𝑌𝑔𝑝𝑖𝑡(𝑑 = 1) − 𝑌𝑔𝑝𝑖𝑡(𝑑 = 0) ∣ 𝐷𝑔𝑝 = 1].10

The regression approach suggests a natural way to extend the DD idea to settings with
multiple groups and time periods. Unfortunately, as several authors have noted (de Chaise-
martin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Imai and Kim, 2021; Athey and
Imbens, 2022; Borusyak, Jaravel and Spiess, 2024), when the average effect of the treatment
varies across groups and over periods, the coefficient on 𝐷𝑔𝑝 in specification (2) does not
always identify an easily interpretable measure of the “typical” effect of the treatment. Al-
though this result is now well established, because it is also somewhat counterintuitive, it
bears further clarification.

While there are multiple ways to think about the typical effect of the treatment when
that effect varies across groups and over time (see Section 2.4 below), an obvious candidate
is the average 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] = 𝔼[𝑌𝑔𝑝𝑖𝑡(𝑑 = 1) − 𝑌𝑔𝑝𝑖𝑡(𝑑 = 0) ∣ 𝐷𝑔𝑝 = 1] of group- and
period-specific average treatment effects, taken over all units that receive the treatment and
all times during which they receive it (i.e., the expectation of 𝛽𝑔𝑝 over the joint distribution
of 𝑔 and 𝑝, conditional on being treated). This is analogous to the average 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]
identified by difference in differences in the two-period, two-group case. Hence, parallel trends

10There are several equivalent variations on this regression. Specification (2) is identical to a regression of
outcomes on an indicator 𝑃𝑜𝑠𝑡𝑖𝑡 for whether 𝑡 occurs in the post-treatment period, an indicator 𝑇 𝑟𝑒𝑎𝑡𝑖𝑡
for whether 𝑖 belongs to the treatment group, and an interaction between the two. Often, the group and
period effects 𝜆𝑔 and 𝛼𝑝 in Equation (2) are replaced with individual and time effects 𝜆𝑖 and 𝛾𝑡. By the
Frisch-Waugh-Lovell theorem, the coefficient on 𝐷𝑔𝑝 in Equation (2) can be obtained by regressing 𝑌𝑔𝑝𝑖𝑡 on
the residuals from a regression of treatment status on group and period effects. Since treatment status only
varies by group and period, these residuals are the same as those from a regression of treatment status on
individual and time effects, so the coefficients on treatment status from both specifications are identical.
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can be expressed as

𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] = 𝜆𝑔 + 𝛼𝑝 + 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]𝐷𝑔𝑝 + [𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝.

The difficulty with the regression approach is that, except in special cases, the “error term”
[𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝 in this expression varies at the group×period level, and is not
mean zero conditional on group membership, period, and treatment status. Consequently, the
regression is misspecified in the sense that the conditional expectation 𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] is
not a linear function of those variables (at least, not one in which the coefficient on 𝐷𝑔𝑝 is
𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]) In contrast to the two-group, two-period case, the coefficient on 𝐷𝑔𝑝 from
the regression DD specification (2) does not identify 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] unless those average
effects are independent of group and period (in which case 𝛽𝑔𝑝 = 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] = 𝛽).
Outside of this special case, when average treatment effects vary across groups and periods,
and the adoption of the treatment by different groups is staggered over time, difference-
in-differences regression does not recover a simple group×period average treatment effect
(de Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Borusyak, Jaravel and
Spiess, 2024).

2.2 The difference-in-differences regression estimand

In light of the preceding argument, we discuss what the DD regression identifies. To provide
additional insight into the difference-in-differences estimand, it can be shown that, under
parallel trends, the coefficient on 𝐷𝑔𝑝 from the difference-in-differences regression specification
(2) identifies the following weighted average of 𝛽𝑔𝑝:

𝛽∗ =
𝐺

∑
𝑔=1

𝑃
∑
𝑝=𝑔

𝜔𝑔𝑝𝛽𝑔𝑝,

with weights that take the form

𝜔𝑔𝑝 =
�̃�𝑔𝑝

∑𝐺
𝑔′=1 ∑𝑃

𝑝′=𝑔′ �̃�𝑔′𝑝′

, (3)

where

�̃�𝑔𝑝 = [(1 − Pr(𝐷𝑔𝑝 = 1 ∣ 𝑔)) − (Pr(𝐷𝑔𝑝 = 1 ∣ 𝑝) − Pr(𝐷𝑔𝑝 = 1))] Pr(𝑔, 𝑝),
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Pr(𝐷𝑔𝑝 = 1 ∣ 𝑝) is the fraction of units that are treated in period 𝑝, Pr(𝐷𝑔𝑝 = 1 ∣ 𝑔) is the
fraction of periods in which members of group 𝑔 are treated, Pr(𝐷𝑔𝑝 = 1) is the fraction
of unit×times that are treated, and Pr(𝑝, 𝑔) is the population share of observations that
correspond to group 𝑔 and period 𝑝. This representation can be obtained from Theorem 1
of de Chaisemartin and d’Haultfoeuille (2020), who note that the weights 𝜔𝑔𝑝 may also be
negative. Our Appendix B presents an alternative derivation based on population regression
algebra.11

Appearances notwithstanding, this weighting scheme is deeply intuitive. Specification (2)
assumes a conditional expectation function that is linear in group, period, and treatment
status. When misspecified, it will attribute some of the heterogeneous impacts of the treatment
to group and period fixed effects.12 As a group’s observed treatment duration increases (i.e.,
the greater Pr(𝐷𝑔𝑝 = 1 ∣ 𝑔) is), more of that group’s treatment effects will be absorbed by
group fixed effects. Similarly, as the probability of being treated in a particular period (i.e.,
Pr(𝐷𝑔𝑝 = 1 ∣ 𝑝)) increases, more of that period’s treatment effects will be absorbed by period
effects. Larger groups also receive more weight.

2.3 A two-stage approach

The observation that the problem arises from misspecification of Equation (2) suggests a
simple two-stage average treatment effect estimator for the multiple group and period case.
As long there are untreated and treated observations for each group and period, 𝜆𝑔 and 𝛼𝑝 are
identified from the subpopulation of untreated groups and periods. The overall group×period
average effect of the treatment on the treated is then identified from a comparison of mean
outcomes between treated and untreated groups, after removing the group and period effects.

This logic suggests the following regression-based two-stage estimation procedure:

1. Estimate the model
𝑌𝑔𝑝𝑖𝑡 = 𝜆𝑔 + 𝛼𝑝 + 𝑢𝑔𝑝𝑖𝑡

on the sample of observations for which 𝐷𝑔𝑝 = 0, retaining the estimated group and
time effects �̂�𝑔 and ̂𝛼𝑝.

2. Regress adjusted outcomes 𝑌𝑔𝑝𝑖𝑡 − �̂�𝑔 − ̂𝛼𝑝 on 𝐷𝑔𝑝.

11One immediate implication of Equation (3) is that the weights must sum to one. Another is that 𝜔11 = 1
when there is only one treatment group, so the regression DD specification (2) identifies the average effect of
the treatment on the treated, as noted above.

12This is consistent with the intuition that Equation (2) uses already-treated units as controls for newly
treated ones (de Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Borusyak, Jaravel and
Spiess, 2024).
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Since parallel trends implies that

𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝]−𝜆𝑔−𝛼𝑝 = 𝛽𝑔𝑝𝐷𝑔𝑝 = 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]𝐷𝑔𝑝+[𝛽𝑔𝑝−𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝,

where 𝔼[[𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝 ∣ 𝐷𝑔𝑝] = 0, this procedure identifies 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1],
even when the adoption and average effects of the treatment are heterogeneous with respect
to groups and periods.

Unbiasedness of the first-stage (and hence second-stage) estimates follows from standard
arguments. If 𝑃 is fixed as the sample size increases, so does the consistency of the first stage
for the group and period effects. The consistency of the second-stage for 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]
follows from the consistency of the first stage for the group and period effects and the
continuous mapping theorem.13 As we show below in Section 3, a variation on the usual
within estimator can be used to apply this procedure using individual, rather than group,
fixed effects.

In DD analyses based on two-way fixed-effects regression, it is common to control for
observable time-varying covariates by simply including them in the regression. The two-stage
approach can readily be adapted to allow for such covariates: simply include them in the
first-stage regression and amend the second-stage to

2’. Regress 𝑌𝑔𝑝𝑖𝑡 − �̂�𝑔 − ̂𝛼𝑝 − 𝑋′
𝑔𝑝𝑖𝑡 ̂𝛾 on 𝐷𝑔𝑝 (where 𝑋𝑔𝑝𝑖𝑡 is the vector of covariates and ̂𝛾

is the estimated vector of coefficients on 𝑋𝑔𝑝𝑖𝑡 from the first-stage regression).

While this approach allows the effect of the treatment to depend arbitrarily on observable
covariates, it does implicitly rule out the possibility of feedback from the treatment to the
covariates and, as Sant’Anna and Zhao (2020) note, covariate-specific trends.14

2.4 2SDD estimands

Implemented as described, the two-stage difference-in-differences (2SDD) estimator identifies
𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1], where the expectation is implicitly taken with respect to all observed units
and periods. This expectation can be expressed as

𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] =
𝐺

∑
𝑔=1

𝑃
∑
𝑝=𝑔

𝛽𝑔𝑝 Pr(𝑔, 𝑝 ∣ 𝐷𝑔𝑝 = 1), (4)

13Also note that restricting the sample to untreated observations does not introduce sample-selection bias
because the selection is with respect to treatment status.

14In principle, the two-stage approach can be modified to accommodate the more stringent notion of
conditional parallel trends introduced by Callaway and Sant’Anna (2021) by interacting the covariates with
time indicators. Caetano et al. (2022) discuss how a two-stage approach (in addition to methods based on
inverse-probability weighting) can be used when the treatment also affects the covariates.
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where Pr(𝑔, 𝑝 ∣ 𝐷𝑔𝑝 = 1) is the population share of treated unit-times that correspond to
group 𝑔 in period 𝑝. While this is a natural summary measure of group×period-specific
average treatment effects, and can be interpreted as an average effect on the treated (ATT),
it may not be especially informative for program evaluation and policy analysis. For example,
even if the effects of the treatment are identical across groups, this measure will put more
weight on groups that are in early stages of the treatment.15 Callaway and Sant’Anna (2021)
provide a much richer discussion of how heterogeneous average treatment effects can be
summarized.

If there is some treatment duration ̄𝑃 such that a subset of groups has been treated for ̄𝑃
periods, then an alternative summary measure is the ̄𝑃-period average

𝐺
∑
𝑔=1

𝑔+�̄�−1
∑
𝑝=𝑔

𝛽𝑔𝑝 Pr(𝑔 ∣ 𝐷𝑔 = 1)/ ̄𝑃 , (5)

where Pr(𝑔 ∣ 𝐷𝑔 = 1) is the fraction of treated units that belong to group 𝑔. Because this
measure averages the group-specific average effects of the treatment for a common set of
completed durations, it may provide a more balanced picture of the typical effect of the
treatment, although it ignores the effects of the treatment for durations longer than ̄𝑃 periods.
The two-stage procedure can be modified to identify this measure by restricting the sample
used in the second step to untreated observations and treated observations with durations no
greater than ̄𝑃.

It is worth noting that the two-stage procedure is equivalent to estimating the two-way
fixed effects model

𝑌𝑔𝑝𝑖𝑡 = 𝜆𝑔 + 𝛼𝑝 + 𝐵′
𝑔𝑝𝑖𝑡𝜃 + 𝑒𝑖𝑡,

where 𝐵𝑔𝑝𝑖𝑡 is a saturated set of interactions between group and period indicators for all
treated observations, then aggregating the group×period-specific treatment effects estimates
in 𝜃 as the sample analog of 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]. One way to see this is to note that, by the
Frisch-Waugh-Lovell (FWL) theorem, estimates of the 𝜆𝑔 and 𝛼𝑝 can be obtained by regressing
𝑌𝑔𝑝𝑖𝑡 on the residuals from auxiliary regressions of group and period indicators on 𝐵𝑔𝑝𝑖𝑡. Since
𝐵𝑔𝑝𝑖𝑡 perfectly predicts group and time for all treated observations, the residuals from these
auxiliary regressions will be zero for all treated units. Consequently, 𝜆𝑔 and 𝛼𝑝 are identified
from variation in untreated outcomes, as they are in the two-stage procedure. In either case,
the overall ATT is identified as 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] = 𝔼[𝑌𝑔𝑝𝑖𝑡 − 𝜆𝑔 − 𝛼𝑝 ∣ 𝐷𝑔𝑝 = 1].16

15When treatment effects vary by group, it is unclear whether any summary measure will be informative
about how the treatment might affect future groups. External validity with this type of heterogeneity is
inherently challenging.

16The same equivalence applies when covariates are included in the first stage of the two-stage procedure,
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2.5 Event studies

DD analyses are often accompanied by event-study regressions of the form

𝑌𝑔𝑝𝑖𝑡 = 𝜆𝑔 + 𝛼𝑝 +
𝑅

∑
𝑟=−𝑅

𝜂𝑟𝑊𝑟𝑔𝑝 + 𝑢𝑔𝑝𝑖𝑡, (6)

where for 𝑟 ≤ 0 the 𝑊𝑟𝑔𝑝 ∈ {𝑊−𝑅𝑔𝑝, … , 𝑊0𝑔𝑝} are (𝑟+1)-period leads of treatment adoption,
and for 𝑟 > 0 the 𝑊𝑟𝑔𝑝 ∈ {𝑊1𝑔𝑝, … , 𝑊𝑅𝑔𝑝} are 𝑟-period lags of adoption (i.e., indicators
for being 𝑟 periods since treatment).17 In principle, such regressions serve a dual purpose.
First, they can be used to show how the effect of the treatment evolves over the course of the
treatment. Second, the coefficients on the treatment adoption leads can be used as placebo
tests for the plausibility of parallel trends.

Sun and Abraham (2021) show that, when duration-specific average treatment effects
vary across groups, event-study regressions suffer from the same problem as DD regressions.
This can be seen using an argument similar to the one presented for DD regressions in
Section 2.1. Let 𝑌𝑔𝑝𝑖𝑡(𝑟) denote potential outcomes after 𝑟 periods of treatment, and
𝜂𝑟𝑔𝑝 = 𝔼[𝑌𝑔𝑝𝑖𝑡(𝑟) − 𝑌𝑔𝑝𝑖𝑡(0) ∣ 𝑔, 𝑝, 𝑊𝑟𝑔𝑝 = 1] be the average effect of being treated for 𝑟
periods for members of group 𝑔 in time period 𝑝.18 Under parallel trends,

𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, {𝑊𝑟𝑔𝑝}𝑅
𝑟=−𝑅] =

𝜆𝑔 + 𝛼𝑝 +
𝑅

∑
𝑟=1

𝔼[𝜂𝑟𝑔𝑝 ∣ 𝑊𝑟𝑔𝑝 = 1]𝐷𝑟𝑝𝑔 +
𝑅

∑
𝑟=1

[𝜂𝑟𝑔𝑝 − 𝔼[𝜂𝑟𝑔𝑝 ∣ 𝑊𝑟𝑔𝑝 = 1]]𝑊𝑟𝑔𝑝,

where, in general, 𝔼[∑𝑃 ∗

𝑟=1[𝜂𝑟𝑔𝑝 − 𝔼[𝜂𝑟𝑔𝑝 ∣ 𝑊𝑟𝑔𝑝 = 1]]𝑊𝑟𝑔𝑝 ∣ 𝑔, 𝑝, (𝑊𝑟𝑔𝑝)] ≠ 0. Hence, mean
outcomes are not necessarily linear in group, period, and treatment-duration indicators, so the
coefficients on the 𝑊𝑟𝑔𝑝 from Equation (6) do not identify the average effects of being treated
for 𝑟 periods. Sun and Abraham (2021) further show that the coefficients on the adoption
leads and duration indicators identify weighted averages of all of the group×period-specific
average treatment effects. An important consequence of this is that the coefficients on the
treatment-adoption leads 𝑊𝑟𝑔𝑝, 𝑟 ≤ 0, may be nonzero even if trends are, in fact, parallel.

with the caveat that, in this case, the two-way fixed-effects regression should include unit and time (rather
than only group and period) indicators, and 𝐵𝑔𝑝𝑖𝑡 should contain a saturated set of unit and time indicators
for treated observations.

17In event-study regressions, it is common practice to use calendar times 𝑡 in place of more coarse treatment
periods 𝑝. When researchers do not wish to include leads, 𝑅 can be set to zero.

18There is a one-to-one correspondence between duration- and period-specific treatment effects. In terms
of the group×period average treatment effects 𝛽𝑔𝑝, the duration-specific effects satisfy 𝜂𝑟𝑔𝑝 = 𝛽𝑔,𝑝−𝑔+1.
While in principle the duration-specific average treatment effects for each group might vary over time, in
practice we only ever observe each treatment duration at most once for each group.
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The two-stage procedure developed above can be extended to the event-study setting by
amending the second stage of the procedure to:

2’. Regress 𝑌𝑔𝑝𝑖𝑡 − �̂�𝑔 − ̂𝛼𝑝 on 𝑊−𝑅𝑔𝑝, … , 𝑊0𝑔𝑡, … , 𝑊𝑅𝑔𝑝.

Following the logic of the previous section, because 𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, (𝑊𝑟𝑔𝑝)]−𝜆𝑔 −𝛼𝑝 is linear in
the 𝑊𝑟𝑔𝑝, the coefficients on the 𝑊𝑟𝑔𝑝, 𝑟 > 0, identify the average effects 𝔼[𝜂𝑟𝑔𝑝 ∣ 𝑊𝑟𝑔𝑝 = 1].19

For 𝑟 ≤ 0, the coefficients on the 𝑊𝑟𝑔𝑝 can be used to test the hypothesis that 𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝑊𝑟𝑔𝑝 = 1] =
𝜆𝑔 + 𝛼𝑝 (i.e., that the mean first-stage population residual is zero for all units who are 𝑟 + 1
periods away from adopting the treatment), as implied by parallel trends. Note that, by
the same logic, the treatment-duration indicators in step 2’ can be replaced with group- or
period-specific treatment-status indicators in order to identify group- or period-specific ATTs.

2.6 Alternative approaches to testing parallel trends

There are alternative approaches to testing the validity of parallel trends within the two-stage
framework. Borusyak, Jaravel and Spiess (2024) recommend testing for parallel trends by
including leads of treatment status in the first stage of the estimator, noting that their
approach can, under some conditions, circumvent concerns about conditioning difference-in-
differences estimates on passing tests for parallel trends (note that inference in this approach
is based on standard OLS asymptotics). Another approach is to assume that parallel trends
holds up to 𝐾 + 1 periods before the adoption of the treatment, then use the two-stage
procedure to estimate the 𝐾 pre-treatment placebo ATTs (i.e., the coefficients on 𝐷𝑟𝑔𝑝 for
𝑟 ∈ {−𝐾, … , −1}). This approach is also suggested by Liu, Wang and Xu (2022), who also
develop an equivalence test to increase the power of tests based on this idea.20

The two-stage framework suggests another approach still, this one motivated by the fact
that it is not necessary to use all pre-treatment periods to identify the group (or individual)

19This expectation is taken over all groups with treatment durations of at least 𝑟. Since under staggered
adoption the completed treatment duration varies by group, the groups over which these duration-specific
effects are averaged will vary across durations. These averages are also what the interaction-weighted estimator
proposed by Sun and Abraham (2021) identifies. If all groups are treated for at least �̄� periods, an alternative
is to exclude observations corresponding to treatment durations longer than �̄� periods from the second-stage
sample, in which case the two-stage approach identifies duration-specific treatment effects, averaged over all
groups.

20While all of the methods discussed above are capable of identifying violations of parallel trends, none of
them reliably identify parameters that can be interpreted as average deviations from trends in pre-treatment
periods. Second-stage coefficients on leads of treatment status test whether average first-stage residuals are
close to zero in pre-treatment periods, first-stage coefficients on such leads presumably identify a (potentially
non-convex) weighted average of deviations from trend for all groups and periods, and placebo ATTs only
represent such deviations under the assumption that parallel trends holds prior to the adoption of the placebo
treatment. This contrasts with traditional event-studies based on two-way fixed-effects regressions with
homogeneous duration-specific average treatment effects, in which the coefficients on leads can be interpreted
as average deviations from trends, subject to a normalization.
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and time effects used by the second stage of the estimator. For example, instead of using all
untreated observations, the first stage can be estimated from the sample of all observations
for never-treated units (from which the period effects and group effects for never-treated
units are identified) as well as all observations for eventually-treated units in the period
immediately before they adopt the treatment (from which the group effects for treated units
are identified).21 Under the normalization that parallel trends holds in the last pre-treatment
period (i.e., that eventually-treated units experience the same time effects in that period as
never-treated units), the coefficients on the 𝐷𝑟𝑔𝑝 for 𝑟 ∈ {−𝐾, … , −1} for this variant of
the two-stage procedure identify average pre-treatment deviations among eventually-treated
units from never-treated units’ trends.22 Although this restriction of the first-stage sample
may reduce the efficiency of the second-stage estimates, it addresses some of the challenges
associated with interpreting coefficients that represent tests of parallel trends from within
the two-stage framework (cf. footnote 20 and Roth 2024). In Appendix Figure 1, we show
that two-stage estimates obtained using this modified procedure correctly identify both
pre- and post-treatment trends in the setting where Roth (2024) shows that the default
de Chaisemartin and d’Haultfoeuille (2020); Callaway and Sant’Anna (2021); Borusyak,
Jaravel and Spiess (2024) estimators do not. While the coefficients on leads of treatment
status from this modified procedure are more readily interpretable, the analogous coefficients
from the “standard” two-stage approach (i.e., using the full untreated sample in the first
stage) still represent valid tests of parallel trends, even if they cannot be interpreted as
average deviations from never-treated trends.

A further advantage of this modified procedure is that it may offer superior performance in
cases when the divergence between untreated outcomes between eventually- and never-treated
units increases over time (an advantage that de Chaisemartin and d’Haultfoeuille (2024)
argue is shared by other estimators that do not compare treated observations to all untreated
observations).

2.7 Inference

The standard errors for the two-stage estimators need to be adjusted to account for the fact
that the dependent variable 𝑌𝑔𝑝𝑖𝑡 − �̂�𝑔 − ̂𝛼𝑝 in the second-stage is generated using estimates
obtained from the first stage of the procedure (Dumont et al., 2005). Perhaps the simplest
way to obtain valid standard errors is using a bootstrap procedure in which both stages of
the estimator are estimated in each bootstrap replication (this is the approach used in Liu,

21The last treated cohort can be used as the never-treated cohort in the absence of a pure control group.
22The normalization required here is the same as that required for traditional two-way fixed-effects event

studies.
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Wang and Xu, 2022). The asymptotic distribution of the second-stage estimates can also
be obtained by interpreting the two-stage procedure as a joint GMM estimator (Hansen,
1982).23

Let 𝑍𝑔𝑝𝑖𝑡 = [𝑌𝑔𝑝𝑖𝑡, (1(𝑔)𝑔𝑝𝑖𝑡), (1(𝑝)𝑔𝑝𝑖𝑡), 𝐷𝑔𝑝] denote the data for observation (𝑔, 𝑝, 𝑖, 𝑡),
consisting of the outcome 𝑌𝑔𝑝𝑖𝑡, the 𝐺-vector of group-membership indicators (1(𝑔)𝑔𝑝𝑖𝑡), a
𝑃-vector (1(𝑝)𝑔𝑝𝑖𝑡) of period indicators for periods 𝑝 ∈ {1, … , 𝑃}, and the treatment-status
indicator 𝐷𝑔𝑝. Let 𝜆 be the 𝐺-vector of group fixed effects, and 𝛼 the 𝑃-vector of period
fixed effects. The two-stage difference-in-differences estimator solves the sample analog of the
moment condition

𝔼[𝑓(𝜆, 𝛼, 𝛽; 𝑊𝑔𝑝𝑖𝑡)] = 𝔼[
[𝑌𝑔𝑝𝑖𝑡 − (1(𝑔)𝑔𝑝𝑖𝑡)′𝜆 − (1(𝑝)𝑔𝑝𝑖𝑡)′𝛼][(1(𝑔)𝑔𝑝𝑖𝑡), (1(𝑝)𝑔𝑝𝑖𝑡)]′(1 − 𝐷𝑔𝑝)

[𝑌𝑔𝑝𝑖𝑡 − (1(𝑔)𝑔𝑝𝑖𝑡)′𝜆 − (1(𝑝)𝑔𝑝𝑖𝑡)′𝛼 − 𝛽𝐷𝑔𝑝]𝐷𝑔𝑝
]

= 0.

By Theorem 6.1 of Newey and McFadden (1994, cf. Newey, 1984), and under standard
regularity conditions,

√
𝑁( ̂𝛽 − 𝛽) 𝑎∼ 𝒩(0, 𝑣), where 𝑣 is the last element of

𝔼[
𝜕𝑓(𝜆, 𝛼, 𝛽; 𝑍𝑔𝑝𝑖𝑡)

𝜕(𝜆, 𝛼, 𝛽) ]
−1

𝔼[𝑓(𝜆, 𝛼, 𝛽; 𝑍𝑔𝑝𝑖𝑡)𝑓(𝜆, 𝛼, 𝛽; 𝑍𝑔𝑝𝑖𝑡)′]𝔼[
𝜕𝑓(𝜆, 𝛼, 𝛽; 𝑍𝑔𝑝𝑖𝑡)

𝜕(𝜆, 𝛼, 𝛽) ]
−1′

.

The preceding expression can be used to manually correct the estimated second-stage
variances for the use of a generated dependent variable. With modern statistical software, a
simpler approach is to estimate both stages of the procedure simultaneously using a GMM
routine.24 This GMM approach does not require doing inference on group-specific treatment
effects, which differs from existing papers—further differences are summarized in Table 1.

3 General theory for 2SDD

This section provides the theoretical results behind the main ideas presented in Section 2, and
considers a more general setting with covariates and individual fixed effects, nesting Section 2
as a special case. We observe {(𝑌𝑖𝑡, 𝑋𝑖𝑡, 𝐷𝑖𝑡)}, where 𝑖 ∈ {1, 2, ⋯ , 𝑁} indexes individuals
and 𝑡 ∈ {1, 2, ⋯ , 𝑇 } indexes time, so there are 𝑁𝑇 observations in a balanced panel. Since
indices 𝑖 and 𝑡 are sufficient to determine the group 𝑔 and period 𝑝, the indices 𝑔, 𝑝 are

23Borusyak, Jaravel and Spiess (2024) provide an alternative derivation of the asymptotic distribution of
the two-stage difference-in-differences and related imputation estimators.

24It is also possible to use the result of Theorem 6.1 of Newey and McFadden (1994, cf. Newey, 1984) to
isolate the component of the variance matrix corresponding to the treatment effect estimate(s) (see Butts
and Gardner, 2022, for a discussion of this approach).
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dropped to avoid notational clutter. The parallel trends assumption now takes the form

𝑌𝑖𝑡 = 𝜆𝑖 + 𝛼𝑡 + 𝐷𝑖𝑡𝛽𝑖𝑡 + 𝑋′
𝑖𝑡𝛾 + 𝜀𝑖𝑡, (7)

where
𝔼[𝜀𝑖𝑡 ∣ {𝐷𝑖𝑡, 𝑋𝑖𝑡}

𝑇
𝑡=1] = 0, (8)

i.e., 𝜀 is mean independent of 𝑋 and 𝐷. Equation (7) with an assumption on the errors is
the parallel trends assumption.

Here, 𝐷𝑖𝑡 is an indicator for treatment status, 𝛽𝑖𝑡 is the heterogeneous treatment effect,
and 𝑋𝑖𝑡 ∈ ℝ𝐾 is a vector of covariates. Since we consider a setting where 𝑁 is large and 𝑇 is
fixed, in a slight abuse of notation we now redefine 𝑋𝑖𝑡 to include time indicators, so that
the vector 𝛾 of coefficients on 𝑋𝑖𝑡 also includes time fixed effects. Note that, compared to
the simplified setting in Section 2, Equation (7) now includes individual fixed effects, the
coefficient on 𝐷𝑖𝑡 is now 𝛽𝑖𝑡 and, accordingly, the error term is denoted by 𝜀𝑖𝑡.

We also make the following substantive assumptions.

Assumption 1. Assume that:

1. (Parallel trends) Outcomes satisfy Equations (7) and (8).

2. For all 𝑖, there exists some 𝑡 where 𝐷𝑖𝑡 = 0, and 𝔼[∑𝑇
𝑡=1 𝐷𝑖𝑡] > 0.

3. Observations {(𝑌𝑖𝑡, 𝐷𝑖𝑡, 𝑋𝑖𝑡)}𝑇
𝑡=1 are independent and identically distributed over indi-

viduals 𝑖.

4. 𝑇 is fixed as 𝑁 → ∞.

Assumption 1.1 tells us that our model is correctly specified when heterogeneous treatment
effects are accounted for. In the special case without covariates, and heterogeneity of 𝛽𝑔𝑝

only at the group and period level, Assumption 1.1 reduces exactly to the parallel trends
assumption stated in Section 2.1.25 Assumption 1.2 requires everyone to be untreated for
at least one period. As is standard in this environment, Assumption 1.3 does not require
independence across time for a given individual, but requires independence over individuals.

25To see this, using the notation in Section 2.1, the assumption becomes:
𝔼[𝑌𝑖𝑡 − 𝐷𝑔𝑝𝛽𝑔𝑝 − 𝜆𝑔 − 𝛼𝑝 ∣ 𝐷𝑔𝑝, 𝑔, 𝑝] = 0, which implies:

𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] = 𝜆𝑔 + 𝛼𝑝 + 𝛽𝑔𝑝𝐷𝑔𝑝

= 𝜆𝑔 + 𝛼𝑝 + 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]𝐷𝑔𝑝 + [𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝.
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The assumption of i.i.d. data is unnecessary, but it is assumed for exposition and to avoid
notational clutter.26

3.1 2SDD

Our general proposed procedure is:

1. Regress 𝑌𝑖𝑡 on 𝑋𝑖𝑡 and individual fixed effects to obtain ̂𝛾 and �̂�𝑖 for observations with
𝐷𝑖𝑡 = 0.

2. Regress adjusted outcomes 𝑌𝑖𝑡 − �̂�𝑖 − 𝑋′
𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡.

Due to the FWL theorem, the first step of this procedure is equivalent to running the
regression using data that have been transformed into deviations from individual means in
the untreated sample. Consequently, we can recover the same ̂𝛾, and consequently ̂𝛽, even
though the 𝜆𝑖 are not consistently estimated.

To be precise, let 𝑇 0
𝑖 ≔ ∑𝑇

𝑡=1 (1 − 𝐷𝑖𝑡) denote the number of periods that individual 𝑖 is
untreated, and define ̃𝑌𝑖𝑡 as

̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑌𝑖𝑡 (1 − 𝐷𝑖𝑡) .

Define ̃𝜀𝑖𝑡 similarly, and let �̃�𝑖𝑡 denote the matrix of deviations of the elements of 𝑋𝑖𝑡 from
their individual untreated means. The procedure given above is equivalent to the following:

1. Regress ̃𝑌0𝑖 on �̃�0𝑖 to obtain ̂𝛾.

2. Regress adjusted outcomes ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡 to obtain ̂𝛽.

Using 𝑋𝑘𝑖𝑡 to denote regressor 𝑘 for individual 𝑖 at time 𝑡, �̃�0𝑖 is a 𝑇 × 𝐾 matrix of the form

�̃�0𝑖 =
⎡
⎢
⎢
⎣

(𝑋1𝑖1 − 1
𝑇 0

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖1) ⋯ (𝑋𝐾𝑖1 − 1
𝑇 0

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖1)

⋮ ⋱ ⋮
(𝑋1𝑖𝑇 − 1

𝑇 0
𝑖

∑𝑇
𝑡=1 𝑋1𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖𝑇) ⋯ (𝑋𝐾𝑖𝑇 − 1

𝑇 0
𝑖

∑𝑇
𝑡=1 𝑋𝐾𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖𝑇)

⎤
⎥
⎥
⎦

.

Similarly, ̃𝑌0𝑖 is a 𝑇 × 1 vector of the form

̃𝑌0𝑖 = [ ̃𝑌𝑖1 (1 − 𝐷𝑖1) ⋯ ̃𝑌𝑖𝑇 (1 − 𝐷𝑖𝑇)]
′
.

26Identical distribution of the triple does not contradict heterogeneous treatment effects, because the
identical distribution of 𝑌𝑖𝑡 can be attributed to the identical distribution of 𝜀𝑖𝑡 instead of 𝛽𝑖𝑡. Heterogeneous
treatment effects can also arise from variation in treatment timing even if the time- and duration-specific
effects of the treatment are identically distributed.
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The coefficient estimator from the first stage regression is then

̂𝛾 = (
𝑁

∑
𝑖=1

�̃�′
0𝑖�̃�0𝑖)

−1

(
𝑁

∑
𝑖=1

�̃�′
0𝑖

̃𝑌0𝑖) .

Observe that both sums are over independent individuals 𝑖 (the sum over time is already
implicit in the matrix multiplication). The second stage-regression is done without a constant,
because the data are already demeaned. Hence, the two-stage difference in difference estimator
is

̂𝛽 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�𝑖𝑡 ̂𝛾)) .

We define 𝛽 as the average treatment effect on the treated (ATT):

𝛽 ≔ 𝔼[𝛽𝑖𝑡 | 𝐷𝑖𝑡 = 1]

where the expectation of 𝛽𝑖𝑡 is taken over all units that receive treatment and all times during
which they receive it, as in Section 2.4. The estimators can be written as the solution to the
following GMM problem

𝔼[
�̃�′

0𝑖 ( ̃𝑌0𝑖 − �̃�0𝑖𝛾)
∑𝑇

𝑡=1 𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡𝛾 − 𝛽𝐷𝑖𝑡)

] = 0,

so we have 𝐾 + 1 moment conditions, with 𝐾 in the first stage and one in the second stage.
The moment condition reduces to that of Section 2.7 as a special case.

Assumption 2. Assume that:

1. 𝔼[∥�̃�′
0𝑖 ̃𝜀0𝑖∥

2
] < ∞, 𝔼[ ̃𝜀2

𝑖𝑡] < ∞, and 𝔼[(𝛽𝑖𝑡 − 𝛽)2] < ∞.

2. 𝔼[�̃�′
0𝑖�̃�0𝑖] is invertible and 𝔼[∥�̃�′

0𝑖�̃�0𝑖∥
2
] < ∞.

The invertibility condition of Assumption 2.2 rules out identification of unit and time
fixed effects separately in environments where treatment cohorts are too small and we are
using too few periods.27

27As an extreme case, suppose there are two treatment cohorts with one state each (2000 and 2001)
and we only have data one period before the event. Then, 1{𝑡 = 2000} + 1{𝑐 = 2000} = 1 among the
untreated observations, resulting in perfect collinearity and hence noninvertibility. To see this, observe that
cohort 𝑐 = 2000 has untreated observations only in year 𝑡 = 1999, and cohort 𝑐 = 2001 only has untreated
observations in year 𝑡 = 2000. Hence, all untreated observations satisfy 1{𝑡 = 2000} + 1{𝑐 = 2000} = 1.
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Theorem 1. If Assumptions 1 and 2 hold, then ̂𝛾 and ̂𝛽 are asymptotically normal, ̂𝛾
𝑝
−→ 𝛾,

̂𝛽
𝑝
−→ 𝛽, and

√
𝑁𝑇 ( ̂𝛽 − 𝛽) 𝑑−→ 𝒩(0, 𝑉), where 𝑉 = 𝐺−1

𝛽 𝔼[(𝑔 + 𝐺𝛾𝜓) (𝑔 + 𝐺𝛾𝜓)′]𝐺−1′
𝛽 , with

𝐺𝛽 = −𝔼[
𝑇

∑
𝑡=1

𝐷𝑖𝑡],

𝐺𝛾 = −𝔼[
𝑇

∑
𝑡=1

𝐷𝑖𝑡�̃�𝑖𝑡],

𝜓 = 𝔼[�̃�′
0𝑖�̃�0𝑖]

−1
(�̃�′

0𝑖 ( ̃𝑌0𝑖 − �̃�0𝑖𝛾)) ,

and

𝑔 =
𝑇

∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡𝛾 − 𝛽𝐷𝑖𝑡) .

Theorem 1 tells us that the 2SDD estimator is consistent for 𝛽, and is asymptotically
normal. Hence, using a consistent variance estimator provides valid inference asymptotically.
The proof proceeds by the arguments in Section 2 and verifying the conditions in Newey and
McFadden (1994).28

3.2 Event Studies

As we note in Section 2.5, there are multiple ways to implement event-studies using the two
stage approach. All of these variations can be understood from within the following framework.
Let 𝑡∗(𝑖) denote the time at which individual 𝑖 becomes treated. Let 𝑊𝑟𝑖𝑡 = 1 [𝑡 − 𝑡∗(𝑖) = 𝑟]
denote whether individual 𝑖 is 𝑟 periods away from treatment at time 𝑡. With slight abuse of
notation, our model is:

𝑌𝑖𝑡 = 𝜆𝑖 +
𝑅

∑
𝑟=−𝑅

𝜂𝑟𝑖𝑡𝑊𝑟𝑖𝑡 + 𝑋′
𝑖𝑡𝛾 + 𝜀𝑖𝑡

= 𝜆𝑖 + 𝑊 ′
𝑖𝑡𝜂𝑖𝑡 + 𝑋′

𝑖𝑡𝛾 + 𝜀𝑖𝑡.

The second equality comes from stacking the 𝑅 + 𝑅 + 1 instances of 𝑊𝑟𝑖𝑡 and 𝜂𝑟𝑖𝑡 objects.
Notice now that 𝜂𝑖𝑡 is a vector with 𝜂𝑟𝑖𝑡 as its components. In the first stage, we have
𝑌𝑖𝑡 = 𝜆𝑖 + 𝑋′

𝑖𝑡𝛾 + 𝜀𝑖𝑡. This regression uses all observations with 𝑡 − 𝑡∗(𝑖) < −𝑅∗, where 𝑅∗

may be zero. Let 𝑄𝑖𝑡 ≔ 1 [𝑡 − 𝑡∗(𝑖) < −𝑅∗]. Then, by analogy to the case for the overall

28Standard errors from this deviations-from-untreated-means estimator are numerically identical to those
from an estimator that includes unit indicators.
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ATT, define 𝑇 𝑄
𝑖 ≔ ∑𝑇

𝑡=1 𝑄𝑖𝑡. Now,

̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 1
𝑇 𝑄

𝑖

𝑇 𝑄
𝑖

∑
𝑡=1

𝑌𝑖𝑡𝑄𝑖𝑡,

and a similar definition applies to �̃�𝑖𝑡 and ̃𝜀𝑖𝑡. Analogously,

�̃�𝑄𝑖 =
⎡
⎢
⎢
⎢
⎣

(𝑋1𝑖1 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖1 ⋯ (𝑋𝐾𝑖1 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖1

⋮

(𝑋1𝑖𝑇 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖𝑇 ⋯ (𝑋𝐾𝑖𝑇 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖𝑇

⎤
⎥
⎥
⎥
⎦

,

and

̃𝑌𝑄𝑖 = [ ̃𝑌𝑖1𝑄𝑖1 ⋯ ̃𝑌𝑖𝑇𝑄𝑖𝑇] .

In this environment, our analogous two-stage procedure is:

1. Regress ̃𝑌𝑄𝑖 on �̃�𝑄𝑖 to obtain ̂𝛾.

2. Regress adjusted outcomes ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡 ̂𝛾 on 𝑊𝑖𝑡 to obtain ̂𝜂.

Hence, the estimators are:

̂𝛾 = ( 1
𝑁 ∑

𝑖
�̃�′

𝑄𝑖�̃�𝑄𝑖)
−1

( 1
𝑁 ∑

𝑖
�̃�′

𝑄𝑖
̃𝑌𝑄𝑖) ,

and

̂𝜂 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�𝑖𝑡 ̂𝛾)) .

The object of interest is now 𝜂 = (𝜂−𝑅, ⋯ , 𝜂𝑅), where 𝜂𝑟 ≔ 𝐸[𝜂𝑟𝑖𝑡 ∣ 𝑡 − 𝑡∗(𝑖) = 𝑟] is the
average coefficient across individuals who are observed 𝑟 periods away from their treatment.
For 𝑟 > 0, 𝜂𝑟 can be interpreted as the treatment effect 𝑟 periods after treatment. If there
are no pre-trends, 𝜂𝑟 = 0 for all 𝑟 ≤ 0.

As before, the estimators can be written as the solution to a GMM problem:

𝔼[
�̃�′

0𝑖 ( ̃𝑌0𝑖 − �̃�0𝑖𝛾)
∑𝑇

𝑡=1 𝑊𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡𝛾 − 𝑊 ′

𝑖𝑡𝛽𝑖𝑡)
] = 0

For the asymptotics to go through as before, we want a condition analogous to Assump-
tion 2 that is suited for event studies.
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Assumption 3. Assume that:

1. 𝔼[∥�̃�′
𝑄𝑖 ̃𝜀0𝑖∥

2
] < ∞, 𝔼[ ̃𝜀2

𝑖𝑡] < ∞, and 𝔼[(𝜂𝑟𝑖𝑡 − 𝜂𝑟)2] < ∞.

2. 𝔼[�̃�′
𝑄𝑖�̃�𝑄𝑖] is invertible and 𝔼[∥�̃�′

𝑄𝑖�̃�𝑄𝑖∥
2
] < ∞.

3. For all 𝑖, there exists some 𝑡 where 𝑄𝑖𝑡 = 0, and 𝔼[𝑁𝑖𝑟] > 0 for all 𝑟 ∈ {−𝑅, … , 𝑅},
where 𝑁𝑖𝑟 ≔ ∑𝑇

𝑡=1 1 [𝑡 − 𝑡∗(𝑖) = 𝑟].

Note that in event studies, we are regressing on 1 [𝑡 − 𝑡∗(𝑖) = 𝑟] in the second stage.
Assumption 3.3 is required for invertibility in the second stage, playing the role of Assump-
tion 1.2.

Theorem 2. If Assumptions 1 and 3 hold, then ̂𝛾 and ̂𝜂 are asymptotically normal, ̂𝛾
𝑝
−→ 𝛾

and ̂𝜂
𝑝
−→ 𝜂, and

√
𝑁𝑇 ( ̂𝜂 − 𝜂) 𝑑−→ 𝒩(0, 𝑉), where 𝑉 = 𝐺−1

𝜂 𝔼[(𝑔 + 𝐺𝛾𝜓) (𝑔 + 𝐺𝛾𝜓)′]𝐺−1′
𝜂 ,

with

𝐺𝜂 = −𝔼[
𝑇

∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡],

𝐺𝛾 = −𝔼[
𝑇

∑
𝑡=1

𝑊𝑖𝑡�̃�′
𝑖𝑡],

𝜓 = 𝔼[�̃�′
𝑄𝑖�̃�𝑄𝑖]

−1
(�̃�′

𝑄𝑖 ( ̃𝑌𝑄𝑖 − �̃�𝑄𝑖𝛾)) ,

and

𝑔 =
𝑇

∑
𝑡=1

𝑊𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡𝛾 − 𝑊 ′

𝑖𝑡𝛽𝑖𝑡) .

3.3 Discussion of Assumptions and Extensions

The simplicity of our regression-based estimation and inference procedure allows us to flexibly
incorporate several extensions and relaxations of the assumptions.

Parallel trends assumption. The theoretical results presented above assume parallel
trends for every group and between every pair of consecutive time periods, as in de Chaise-
martin and d’Haultfoeuille (2020); Sun and Abraham (2021). This assumption is stronger
than the one used in Callaway and Sant’Anna (2021), who only require parallel trends between
treated groups and never-treated groups after their treatment time. While this accommodates
cases where parallel trend fails prior to treatment time, the distinction may not matter in
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practice, as testing for parallel trends prior to treatment time is often used as a proxy for the
infeasible test for parallel trends post treatment. If the stronger version of parallel trend fails,
researchers tend to have little confidence in the weaker version.

Nevertheless, our procedure can be modified to accommodate the weaker version. If we
only believe in the weak version of parallel trends, our procedure can be modified to only
include the never-treated groups in the first-stage regression at the cost of losing some power.
In contrast, even if the stronger version of parallel trend holds, the Callaway and Sant’Anna
(2021) approach does not yield a more precise estimate because it does not make use of data
from treated observations before relative time −1.

Our approach can be adapted to reduce bias when the parallel trends assumption is
violated. The potential for a larger bias arises if the parallel trends assumption does not
hold exactly and the difference in trends between groups increases over time. To reduce
the bias, we can simply estimate the first stage using untreated data within a few periods
of being treated. Group-specific linear trends may also be included in the regression-based
approach to remove the group trends directly. In particular, 𝑋𝑖𝑡 in Equation (7) may include
1{𝑔(𝑖) = 𝑔}𝑡, where 𝑔(𝑖) denotes the group to which observation 𝑖 belongs.

Triple differences. In a triple differences setting, when the coefficients on treatment, time,
and group are consistently estimable, the relevant indicators can be collected in the 𝑋𝑖𝑡

vector. In this case, 𝛾 collects these additional fixed effects, and our two-step procedure still
applies.

Serial correlation. It is possible to adapt the procedure to obtain an efficient estimator
even in the presence of serial correlation. Since the estimator is identical to the imputation
estimator of Borusyak, Jaravel and Spiess (2024), it is known that the estimator is efficient
in the canonical normal homoskedastic model. If there is serial correlation in the error term
following an AR(1) process for each 𝑖, we can make a simple adjustment to the regression. If
𝜀𝑖𝑡 in Equation (7) is AR(1) with correlation parameter 𝜌, then Equation (7) can be written as
𝑌𝑖𝑡 = 𝜌𝑌𝑖𝑡−1+𝛿𝑖𝑡𝐷𝑖𝑡+�̃�𝑖+ ̃𝛾𝑡+𝜈𝑖𝑡, with 𝜈𝑖𝑡|𝐷𝑖𝑡, 𝑌 𝑡−1

𝑖 ∼ 𝒩(0, 𝜎2) for an appropriately defined
�̃�𝑖, ̃𝛾𝑡 and 𝑌 𝑡−1

𝑖 ≔ {𝑌𝑖1, 𝑌𝑖2, ⋯ , 𝑌𝑖𝑡−1}. Our procedure can be analogously implemented by:
(1) regressing 𝑌𝑖𝑡 on 𝑌𝑖𝑡−1, 𝑋𝑖𝑡, and fixed effects for observations with 𝐷𝑖𝑡 = 0, (2) regressing
𝑌𝑖𝑡 − ̂𝜌𝑌𝑖𝑡−1 − ̂�̃�𝑖 − ̂̃𝛾𝑡 on 𝐷𝑖𝑡. Since the OLS estimator coincides with the maximum likelihood
estimator, the resulting estimator is efficient, though it identifies a different estimand.

Continuous treatments. Our approach to estimation and inference extends to continuous
treatments and discrete (non-binary) treatments. In this setting, observations have 𝐷𝑖𝑡 = 0
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prior to treatment, but the treatment value may be continuous post-treatment. The two-stage
procedure still applies, with the first-stage regressing the outcome on 𝑋 for 𝐷𝑖𝑡 = 0 to obtain
̂𝛾, and the second stage regressing 𝑌𝑖𝑡 − 𝑋′

𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡 to obtain ̂𝛽. When implementing the
two-stage regression procedure, due to Yitzhaki (1996, also see Angrist and Krueger, 1999 and
Angrist and Pischke, 2009), 2SDD identifies a (positive) weighted average of the derivatives
of the causal response function. Inference proceeds through GMM as before.

Anticipation effects. The procedure can be extended to accommodate anticipation effects.
If the treatment is anticipated for 𝑟 periods before adoption, we can redefine treated to mean
having adopted the treatment for at least 𝑟 periods.

Reversible treatment and several treatments. The procedure can be extended to
accommodate reversible treatment and having several treatments. If the treatment is reversible,
one way to apply our results is to use the (potentially strong) assumption that there are no
within-unit spillovers of the treatment to future periods. Alternatively, if there are within-unit
spillovers of the treatment to future periods, we can define 𝑊𝑖𝑡 in Section 3.2 as a vector of
indicators for the treatment path, which is defined as the sequence of treatment indicators
since first treatment.29 Observations that have been treated prior to 𝑡 are excluded from the
first stage. The asymptotics hold when there are many observations with the same treatment
path. The estimands remain interpretable as the corresponding coefficients are effects relative
to the untreated group. If there are several treatments, say 𝐷1 and 𝐷2, then we can similarly
define each treatment path as a tuple of the treatment duration of (𝐷1, 𝐷2), so 𝑊𝑖𝑡 is a
vector of indicators for every combination of these tuples. The rest of the procedure and
interpretation are identical to that of having reversible treatment with within-unit spillovers.

Design-based analysis. The 2SDD estimand is also interpretable in a design-based world.
Let 𝐴1𝑖 denote the number of periods that individual 𝑖 has been treated, with 𝐴1𝑖 = 1
in the period that 𝑖 was first treated. Further, assume that 𝛽𝑖𝑡 = 𝛽𝑖 for all 𝑡. Define the
estimand as 𝛽 ≔ 𝔼[𝛽𝑖𝑡 | 𝐷𝑖𝑡 = 1]. Using an argument similar to the proof of Lemma B.1 in
Appendix B, 𝛽 = plim(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡)

−1
(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡𝛽𝑖𝑡). Hence, in the setting with

staggered treatment adoption, 𝛽 = plim(∑𝑁
𝑖=1 𝐴𝑖)

−1
(∑𝑁

𝑖=1 𝐴𝑖𝛽𝑖). Under the Athey and
Imbens (2022) setup where the adoption time of treatment is as good as random, 𝐴𝑖 is
randomly assigned across individuals in our setting, so 1

𝑁 ∑𝑁
𝑖=1 𝐴𝑖

𝑝
−→ 𝑎, and 𝔼[𝐴𝑖] = 𝑎 for

29For instance, (0, 1, 0, 1) and (0, 1, 1, 1) are two different treatment paths. While both groups begin
being treated in the second period, the only first group becomes untreated in the third period. The coefficient
on the third and fourth periods are then allowed to be different for the two groups to accommodate the
different treatment paths.

22



all 𝑖. Thus, the estimand becomes 𝛽 = 1
𝑎𝑁𝔼[∑𝑁

𝑖=1 𝐴𝑖𝛽𝑖] = 1
𝑎𝑁 ∑𝑁

𝑖=1 𝔼[𝐴𝑖]𝛽𝑖 = 1
𝑁 ∑𝑁

𝑖=1 𝛽𝑖,
which is exactly the average treatment effect (ATE).

Arbitrary linear combination of treatment effects. The procedure can also be
extended to estimating any linear combination of coefficients. Recall that we have the
model 𝑌𝑖𝑡 = 𝐷𝑖𝑡𝛽𝑖𝑡 + 𝑋′

𝑖𝑡𝛾 + 𝜀𝑖𝑡 with 𝔼[𝜀𝑖𝑡 ∣ {𝐷𝑖𝑡, 𝑋𝑖𝑡}
𝑇
𝑡=1] = 0. This model implies that

𝔼[𝑌𝑖𝑡 − 𝐷𝑖𝑡𝛽𝑖𝑡 − 𝑋′
𝑖𝑡𝛾] = 0. We are interested in 𝜏 ≔ 𝑤𝑖𝑡𝛽𝑖𝑡, where 𝑤𝑖𝑡 is a nonstochastic

weight. Due to the moment condition, and 𝑤𝑖𝑡 being nonstochastic,

𝔼[𝑤𝑖𝑡𝑌𝑖𝑡 − 𝑤𝑖𝑡𝑋′
𝑖𝑡𝛾] − 𝔼[𝐷𝑖𝑡]𝑤𝑖𝑡𝛽𝑖𝑡 = 0.

Assume that heterogeneity in 𝔼[𝐷𝑖𝑡] occurs at some level ℎ, and 𝜁 is the vector of values it can
take, so that 𝔼[𝐷𝑖𝑡] = 1(ℎ)′

𝑖𝑡𝜁. Assume that 𝜁 is either known or can be consistently estimated,
and all elements of 𝜁 are nonzero. Then, by summing 𝑤𝑖𝑡𝛽𝑖𝑡 = 𝔼[𝑤𝑖𝑡𝑌𝑖𝑡 − 𝑤𝑖𝑡𝑋′

𝑖𝑡𝛾]/𝔼[𝐷𝑖𝑡]
over 𝑖, 𝑡:

𝜏 = ∑
𝑖,𝑡

𝑤𝑖𝑡𝛽𝑖𝑡 = ∑
𝑖,𝑡

𝑤𝑖𝑡𝔼[
𝑌𝑖𝑡 − 𝑋′

𝑖𝑡𝛾
1(ℎ)′

𝑖𝑡𝜁
]

Hence, writing everything as a system of moment conditions,

𝔼
⎡
⎢
⎢
⎣

1(ℎ)𝑖𝑡 (𝐷𝑖𝑡 − 1(ℎ)′
𝑖𝑡𝜁)

𝑋𝑖𝑡 (1 − 𝐷𝑖𝑡) (𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾)

𝜏 − 𝑤𝑖𝑡 (𝑌𝑖𝑡−𝑋′
𝑖𝑡𝛾

1(ℎ)′
𝑖𝑡𝜁 )

⎤
⎥
⎥
⎦

= 0

The just-identified system of equations enables the application of GMM in the same way as
before.

4 Rejection rates for randomly generated interventions

This section conducts Monte Carlo simulation exercises inspired by Bertrand, Duflo and
Mullainathan (2004) to evaluate the two-stage approach and provide insight into how various
difference-in-differences (DD) methods perform under realistic conditions. First, we aim to
assess finite-sample performance in environments that resemble common empirical applications.
Second, acknowledging that theoretical frameworks often rely on the assumption of i.i.d.
data, we simulate scenarios that incorporate autocorrelation and reflect real-world datasets
more accurately. Third, the proliferation of recently proposed alternatives for DD estimation
necessitates a comparative analysis to discern their relative strengths and weaknesses. Lastly,
since the Borusyak, Jaravel and Spiess (2024) method shares point estimates with ours, it
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becomes essential to assess the distinct approaches to inference. We summarize the differences
between our approach and the existing papers in Table 1.

4.1 Data and methodology

Our primary dataset consists of wage data for women between the ages of 25 and 50 from
the Current Population Survey (CPS). We define wage as the natural logarithm of weekly
earnings, which are recorded in the fourth interview month in the Merged Outgoing Rotation
Group of the CPS.30 The data span a 42-year period from 1979 to 2020 and contain over
one million women reporting strictly positive weekly earnings. Using data from 50 states, we
construct a state-by-year panel dataset comprising average wages in 2,100 state-year cells
for our Monte Carlo exercises. In such environments, the theoretical results of Borusyak,
Jaravel and Spiess (2024) regarding efficiency, which also hold for our estimator, may not
apply (though see our discussion in Section 3.3). In addition, we generate an i.i.d. dataset by
drawing the outcome variable from a normal distribution with the same mean and variance
as wages in our CPS sample.

Our simulation study adopts a “random design” strategy. This approach introduces
stochasticity by randomly drawing treated states, treatment effects, and treatment timing in
each iteration. By doing so, we create a more realistic representation of real-world scenarios
where the assignment of treatments may not follow a fixed pattern (Athey and Imbens,
2022). Importantly, we also document some inherent limitations of considering treatment and
treatment timing as non-stochastic as in the “fixed design” approach of Borusyak, Jaravel
and Spiess (2024).31

To simulate a staggered treatment setting, we randomly assign states to the treatment
group and generate treatments that occur randomly over a specified period. This contrasts
with the original exercise by Bertrand, Duflo and Mullainathan (2004), in which the placebo
treatment timing is homogeneous across treated states and drawn uniformly at random. In
all cases, we restrict the earliest treatment year to 1982 and the latest treatment year to
2014. Since treatment is an absorbing state, this ensures that we observe outcome data in all
treated states for at least 5 years after the treatment event.

We estimate the effects of the randomly generated interventions using the two-stage
approach (with our analytical standard errors) as well as a number of alternative methods for

30Using the logarithmic transformation excludes women with zero weekly earnings. While many recent
papers use quasi-logarithmic transformations to incorporate zero-valued observations, Thakral and Tô (2023)
document substantial biases arising from the use of such transformations, and thus we focus on women with
strictly positive earnings following Bertrand, Duflo and Mullainathan (2004).

31See Appendix C for further discussion, though we note that our conclusions do not require random
designs.
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comparison. In particular, we consider the imputation approach from Borusyak, Jaravel and
Spiess (2024), using both their “default” asymptotically conservative standard errors and
“leave-out” version with improved finite-sample performance, as well as various alternative
estimators (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; de Chaisemartin and
d’Haultfoeuille, 2024; Wooldridge, 2021).32 Standard errors are adjusted for clustering at the
state level, following Bertrand, Duflo and Mullainathan (2004).

4.2 Simulation results

We conduct an event-study analysis to estimate the effect of the randomly generated inter-
ventions in each of the five years starting from the time of treatment. The primary measure
we use to evaluate the performance of each method is the relative frequency of rejecting the
null hypothesis of the true generated effect size at the 5 percent significance level over 500
simulations. We also report the mean bias, root-mean-square error (RMSE), and average
per-simulation computational speed.

The baseline environment consists of states being treated over a 20-year period, which
corresponds to an empirical example highlighted in the recent Miller (2023) guide to event-
study models (the impact of state-level school finance reforms in 26 states from 1990–2011
from Lafortune, Rothstein and Schanzenbach, 2018). However, we consider 40 treated states
in our baseline environment and ensure at least 2 treated states per year, with the goal of
providing the Borusyak, Jaravel and Spiess (2024) approach to inference with a more balanced
assessment since computing their leave-out variance estimator requires that no treatment
cohort consists only of a single state. Treatment effects are heterogeneous and drawn from a
normal distribution, with an average value randomly drawn between 2 percent and 5 percent
of the average wage and a standard deviation equal to 10 percent of the average wage.

Table 2 reports results from the baseline environment, in which the average true effect is
approximately 0.2. Our proposed two-stage method with the GMM approach to inference
leads to rejection rates near 5 percent, with standard errors around 0.10. Despite having the
same point estimates, the default Borusyak, Jaravel and Spiess (2024) variance estimator
leads to the most substantial levels of over-rejection, ranging from 13 percent to 16.8 percent,
with standard errors around 0.08. Their leave-out variance estimator, on the other hand, leads
to overly conservative estimates, with rejection rates around 1 percent and standard errors
around 0.14. Compared to the leave-out variance estimator, the Sun and Abraham (2021)

32We conduct these analyses in Stata using the packages did2s (Butts, 2021), did_imputation
(Borusyak, 2021), csdid (Rios-Avila, Sant’Anna and Callaway, 2023), eventstudyinteract (Sun, 2021),
did_multiplegt_dyn (de Chaisemartin et al., 2023), and jwdid (Rios-Avila, Nagengast and Yotov, 2022).
With the exception of jwdid, the authors of the respective methodological papers were directly involved in
the development of the packages.
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method leads to similar rejection rates with a larger standard error (around 0.17) and the
Callaway and Sant’Anna (2021), de Chaisemartin and d’Haultfoeuille (2024), and Wooldridge
(2021) methods result in similar standard errors (around 0.14) but achieve rejection rates
closer to 5 percent.

The two-stage approach and the imputation approach share a speed advantage, outper-
forming most alternatives by a factor of 100 or more. This highlights the simplicity of the
two-stage estimator, which can be computed straightforwardly using OLS regressions, and
the advantage of having analytical standard errors based on the familiar GMM approach to
inference.

To further evaluate these methods, we proceed to vary the minimum number of treated
states in each year, the number of years during which the treatment can occur, and the total
number of treated states. We then extend our analysis to environments with homogeneous
treatment effects and i.i.d. data.

4.2.1 Size of treatment cohorts

Many datasets, such as the setting from Lafortune, Rothstein and Schanzenbach (2018), have
the feature that treatment cohorts may consist of only a single treated unit. To accommodate
such instances, we remove the restriction that at least two states must be treated in each
period. In this case, the leave-out variance estimator from Borusyak, Jaravel and Spiess (2024)
can no longer be computed. Aside from that, removing the restriction leads to similar results
for all methods (Appendix Table 1). With the (overly) conservative leave-out option no
longer available, over-rejection becomes a significant concern with the imputation approach.

4.2.2 Number of treatment cohorts

Table 3 shows how the results change after increasing the number of treatment cohorts to
30 from the baseline of 20. This change has little effect on two-stage approach and the
Callaway and Sant’Anna (2021) estimator, with both leading to similar rejection rates (near
5 percent) and standard errors (around 0.10 for 2SDD and around 0.14 for CS) as before.
The Sun and Abraham (2021) standard error also changes little and leads to similar rates
of under-rejection as before. In contrast, the default Borusyak, Jaravel and Spiess (2024)
variance estimator leads to even more severe over-rejection rates than before, ranging from
25 percent to 30 percent, with much smaller standard errors of around 0.06. In this case, the
leave-out variance estimator cannot be computed. Additionally, the de Chaisemartin and
d’Haultfoeuille (2024) and Wooldridge (2021) estimators lead to smaller standard errors than
before (0.10 and 0.12, respectively), leading to over-rejection (rates around 20 percent and
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10 percent respectively).
Decreasing the number of treatment cohorts to 15 similarly has little effect on the

performance of the two-stage approach, the Callaway and Sant’Anna (2021) estimator, and
the Sun and Abraham (2021) estimator, as Appendix Table 2 show. The default Borusyak,
Jaravel and Spiess (2024) variance estimator continues to lead to over-rejection, though with
a rejection rate of only around 10–12 percent, while the de Chaisemartin and d’Haultfoeuille
(2024) and Wooldridge (2021) estimators lead to slightly higher rejection rates than before.

Overall, these results highlight the anti-conservativeness of the default imputation approach
to inference. This can be attributed to over-fitting in finite samples.33 This observation also
explains why the imputation default performs poorly when the number of groups increases
relative to 𝑁.34 Due to over-fitting when the group size is small, the extent of over-rejection
using that approach becomes more severe if treatment timing is staggered over a longer
period. In practice, we find evidence of over-rejection using the imputation default variance
estimator even if the treatment is staggered over fewer periods (see Appendix Tables 3 to 5).

4.2.3 Number of treatment units

The baseline environment consists of 40 treated states. However, many empirical examples
such as the Lafortune, Rothstein and Schanzenbach (2018) setting consist of fewer treated
units (26 states in that case). Before proceeding, we note that Borusyak, Jaravel and
Spiess (2024) suggest a minimum effective number of treated observations of 30 because, as
their documentation states, “inference on coefficients which are based on a small number of
observations is unreliable” (see the Herfindahl condition in their paper). Given the prevalence
of empirical examples with smaller numbers of treated units, we evaluate the performance of
the various methods in such settings to shed light on their relative strengths and weaknesses.

To hold fixed the number of treatment cohorts while ensuring that the Borusyak, Jaravel
and Spiess (2024) leave-out variance estimator can be computed even when the number of
treated states is only 30, we consider settings with 15 treatment cohorts. In all cases except for
the default Borusyak, Jaravel and Spiess (2024) variance estimator and the Wooldridge (2021)
estimator, when decreasing the number of treated states from 40 (Appendix Table 2) to 30

33The standard errors for the imputation estimator developed in Borusyak, Jaravel and Spiess (2024) are
constructed based on the residuals ̃𝜀𝑖𝑡 = ̂𝜏𝑖𝑡 − ̂̄𝜏𝑖𝑡, where ̂𝜏𝑖𝑡 is the estimated treatment effect for unit 𝑖
at time 𝑡 and ̂̄𝜏𝑖𝑡 is some average of these estimated individual treatment effects. Their “default” is to use
cohort-period averages for ̂̄𝜏𝑖𝑡, i.e., ̂̄𝜏𝑖𝑡 = ̂̄𝜏𝑔𝑝. However, by using cohort-period averages, they are partway
to the degenerate limit of zero variance. Hence, the variance estimator in Borusyak, Jaravel and Spiess (2024)
is anti-conservative when the groups are small: in the extreme case, ̂̄𝜏𝑖𝑡 = ̂𝜏𝑖𝑡, so ̃𝜀𝑖𝑡 = 0.

34Since their default is to use ̂̄𝜏𝑖𝑡 = ̂̄𝜏𝑔𝑝, as 𝐺 increases, the groups become finer, so ̃𝜀𝑖𝑡 → 0, which
underestimates the variance. This problem is avoided if the imputation method were to use the largest group
available, where ̂̄𝜏𝑖𝑡 = ̂̄𝜏 = ̂𝛽, as GMM does.
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(Appendix Table 6), the standard error appreciably increases and the resulting rejection rates
remain stable. These simulation results suggest that most difference-in-difference methods
may still apply reliably in empirical settings with smaller numbers of treated units and,
furthermore, highlight an important advantage of the GMM approach to inference.

4.2.4 Homogeneous treatment effects

While the possibility of misspecification under the TWFE regression model in situations with
heterogeneous treatment effects motivates the development of alternative methods for DD
estimation (see Section 2.2), the case of homogeneous treatment effects provides a useful
benchmark for comparing different methods. The various alternative approaches eliminate
bias that arises when estimating average treatment effects in the presence of treatment effect
heterogeneity with staggered treatment timing. A natural question, however, is whether the
reduction in bias comes at the cost of considerably increasing the variance even when the
TWFE model is correctly specified.

We therefore conduct a set of simulations in which treatment effects are homogeneous
across units and time periods. In these simulations, the normal distribution from which
treatment effects are drawn has an average value equal to 5 percent of the average wage, the
maximum value of the range from before.

When treatment effects are homogeneous, we find that the two-stage approach performs
almost as well as a TWFE estimator that imposes a null effect in the pre-treatment periods,
as Appendix Table 7 shows. Both methods achieve rejection rates around 5 percent, though
TWFE gives slightly smaller standard errors (an average of 0.102 instead of 0.103).35 Since
homogeneous treatment effects is a special case of our setup, the 2SDD estimand converges
to the true treatment effect 𝛽, which is the same limit as TWFE.36

The other methods, however, are markedly outperformed by TWFE. The Borusyak,
Jaravel and Spiess (2024) default variance estimator gives much smaller standard errors of
about 25 percent smaller than under TWFE, leading to rejections of the null hypothesis of
the true effect about three times as often as under TWFE. The Borusyak, Jaravel and Spiess

35In comparison, the fully dynamic event-study specification using TWFE yields an average standard
error of 0.137.

36Due to the FWL theorem, the estimator ̂𝛽TWFE is numerically identical to the result we would obtain
by first regressing 𝑌𝑖𝑡 and 𝐷𝑖𝑡 on 1(𝑔)′

𝑖𝑡, 1(𝑝)′
𝑖𝑡 for all observations, and then regressing the residual

of 𝑌𝑖𝑡 on the residual of 𝐷𝑖𝑡. In the first stage, �̂�TWFE = 𝜆(1 + 𝑜𝑃(1)) and �̂�TWFE = 𝛼(1 + 𝑜𝑃(1)),
when there are homogeneous treatment effects. The 2SDD approach is similar, except that the first stage
regression uses only the untreated observations, so �̂�2SDD = 𝜆(1 + 𝑜𝑃(1)), �̂�2SDD = 𝛼(1 + 𝑜𝑃(1)). Then,
asymptotically, the residual generated in both procedures will be ̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − �̂�′1(𝑔)𝑖𝑡 − �̂�′1(𝑝)𝑖𝑡 =
𝑌𝑖𝑡 − 𝜆′1(𝑔)𝑖𝑡 − 𝛼′1(𝑝)𝑖𝑡 + 𝑜𝑃(1). 2SDD and TWFE hence only differ in the second stage: TWFE regresses

̃𝑌𝑖𝑡 on the residual of 𝐷𝑖𝑡 while 2SDD regresses ̃𝑌𝑖𝑡 on 𝐷𝑖𝑡. Since both estimators converge to the same
limit, the only difference in inference is the variance.
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(2024) leave-out variance estimator (standard error 0.14) and the Sun and Abraham (2021)
approach (standard error 0.17) reject only 20–40 percent as often as TWFE. The Callaway
and Sant’Anna (2021), de Chaisemartin and d’Haultfoeuille (2024), and Wooldridge (2021)
estimators yield similar rejection rates as our approach and TWFE, but with a relatively
large standard errors (around 0.13–0.14). The two-stage approach, in comparison, provides
the most natural way to extend DD estimation to achieve robustness to treatment effect
heterogeneity without much efficiency loss.

4.2.5 I.i.d. data

The data that we use for our primary simulation exercises exhibit realistic features such
as higher-order serial correlation. However, we note that the advantages of the two-stage
approach do not rely on this particular feature of the data. We show this by conducting
the much simpler exercise of generating i.i.d. data and comparing the performance of the
different estimators.

All of our conclusions persist in the i.i.d. environment. The baseline environment (Table 4)
continues to show rejection rates close to 5 percent for the two-stage approach. The same
also holds for the Callaway and Sant’Anna (2021), de Chaisemartin and d’Haultfoeuille
(2024), and Wooldridge (2021) estimators, though with standard errors around 30 percent
larger. Also as before, the default Borusyak, Jaravel and Spiess (2024) variance estimator
leads to over-rejection (rejection rates ranging from 14.4 percent to 17.6 percent), while their
leave-out variance estimator is overly conservative (rejection rates ranging from 0.2 percent
to 1.8 percent), as is the Sun and Abraham (2021) estimator. The same patterns hold in the
simple case of homogeneous treatment effects (Appendix Table 8). The comparison between
Appendix Tables 9 to 12 shows, as before, that a larger number of treatment cohorts leads
to smaller standard errors for all methods but keeps rejection rates stable for all except the
default Borusyak, Jaravel and Spiess (2024) variance estimator, the de Chaisemartin and
d’Haultfoeuille (2024) estimator, and the Wooldridge (2021) estimator, for which rejection
rates reach as high as 31.7 percent, 21.2 percent, and 13.2 percent, respectively. Analogously,
the comparison between Appendix Tables 13 and 14 shows, as before, that decreasing the
number of treated states leads to notably larger standard errors and correspondingly stable
rejection rates for all methods except the default Borusyak, Jaravel and Spiess (2024) variance
estimator (for which rejection rates increase from 10.6–12.6 percent to 14.2–19.0 percent as
the number of treated states decreases from 40 to 30) and the Wooldridge (2021) estimator
(for which rejection rates increase to 8.6–10.6 percent as the number of treated states decreases
to 30).
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5 Empirical applications

This section illustrates the performance of our two-stage estimator through a variety of
empirical applications. In particular, we replicate all papers with variation in treatment
timing and a single treatment event listed in Table 1 of Sun and Abraham (2021) using
the existing heterogeneity-robust estimators that have been published as well as 2SDD.37

The seven papers that we reanalyze appear in Table 5, with the number of treatment
cohorts ranging from 5 to 21. The applications cover a range of fields including development,
education, environmental, finance, health, political economy, and public economics. This
allows us to assess the estimator’s performance in real-world scenarios that deviate from the
stylized setting in the simulations.

Going beyond our Monte Carlo analysis of wage data poses an inherent challenge because
the true effects are no longer known. Except for the two-way fixed effects (TWFE) estimator,
the different methods tend to produce fairly comparable point estimates with one another
(Figure 1). Our discussion therefore largely focuses on the extent of agreement in terms of
confidence intervals and 𝑡-statistics across the different methods. While we provide the full
set of results in the online appendix, we emphasize in the main text notable instances in
which conclusions may differ depending on the choice of method.

Several patterns emerge from our analysis of the differences in results across estimators.
We first investigate differences in coverage of confidence intervals, including a discussion of
differences between our method and that of Borusyak, Jaravel and Spiess (2024). Next, we
examine consistency between the 𝑡-statistics and standard error estimates across methods,
highlighting instances where they disagree most. We then address differences in the pre-event
coefficient estimates. Finally, we discuss how the various estimators compare with TWFE.

5.1 Event-study estimates

For the first event-study analysis in each empirical paper, we provide the corresponding
estimates using the different methods in Figure 1.38 Figure 2 reports the average standard
error for each method applied to each of these papers (also see regression results in Table 6),
which we discuss below. We only consider the default Borusyak, Jaravel and Spiess (2024)

37As the different packages mentioned in Section 4 have different data processing requirements, we provide
a Stata package didio to harmonize the input and output format for all of them, which can be used by other
researchers interested in implementing any subset of methods. Compared to Section 4, the larger datasets
and extensive set of covariates commonly used in empirical applications magnify the differences in runtime.
Some methods can take many hours (Sun and Abraham, 2021) or even days (Callaway and Sant’Anna, 2021)
to run for a single outcome, while the equivalent TWFE regressions run within minutes.

38The exception is Kuziemko, Meckel and Rossin-Slater (2018), discussed in Appendix D, with estimates
presented in Appendix Figure 2. The remaining estimates appear in Appendix Figures 3 to 7.
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variance estimator because five out of seven of our empirical settings contain treated cohorts
with only one unit.

The Bailey and Goodman-Bacon (2015) analysis of the effects of increasing access to
primary care on mortality rates consists of data on more than 3,000 U.S. counties over a 40-
year period, with 15 treatment cohorts and a never-treated group. The large standard errors
using the Callaway and Sant’Anna (2021) estimator create difficulty in visually discerning
the differences between the other methods in Figure 1a, but Figure 2 and Table 6 make the
comparison clearer. In this case, the Sun and Abraham (2021) estimator seems to perform
best, yielding the most precise estimates, followed by 2SDD and then the de Chaisemartin
and d’Haultfoeuille (2024) estimator. Notably, the Borusyak, Jaravel and Spiess (2024)
estimator in some cases produces a standard error over twice as large as that of 2SDD. This
possibility can arise in finite samples when the covariance between the residual and the
estimated treatment effect for unit 𝑖 at time 𝑡 contributes a sufficiently negative component
to the Borusyak, Jaravel and Spiess (2024) variance estimator.39

Deryugina (2017) studies the effect of hurricanes on government transfers using data from
over 1,000 U.S. counties over a 44-year period, with 15 treatment cohorts and a never-treated
group. In this case, we find the most precise estimates using the Sun and Abraham (2021)
and de Chaisemartin and d’Haultfoeuille (2024) estimators and the least precise estimates
again using the Callaway and Sant’Anna (2021) estimator. Unlike in the previous example,
for all 11 post-treatment periods and all 15 outcome variables, the Borusyak, Jaravel and
Spiess (2024) estimator results in smaller standard errors compared to 2SDD.

He and Wang (2017) examine the impact of increased bureaucrat quality on the effec-
tiveness of social assistance programs in rural China. The authors present a case study,
including field interviews with local officials and bureaucrats, administrative records, and
online surveys, as well as analyze a panel dataset consisting of a representative sample of
255 villages over a 12-year period, with between 1 and 30 villages being treated in each of
8 treatment cohorts. Only 2SDD and the Borusyak, Jaravel and Spiess (2024) event-study
estimates provide evidence that supports the case study results by showing evidence of a
significant improvement in the delivery of public services to poor households for all four
outcomes. Among the other methods, the estimates from de Chaisemartin and d’Haultfoeuille

39To be precise, let 𝑣𝑖𝑡 denote the weights on residual 𝜀𝑖𝑡 when constructing the variance of
the coefficient, hats denote the estimators for the various coefficients, and ̂𝜏𝑖𝑡 denote the treat-
ment effect for unit 𝑖 at time 𝑡 estimated by the Borusyak, Jaravel and Spiess (2024) shrink-
age method. The variance estimator of Borusyak, Jaravel and Spiess (2024) uses �̂�2

BJS =
∑𝑖(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′

𝑖𝑡�̂� − 𝐷𝑖𝑡 ̂𝜏𝑖𝑡))2, while we use �̂�2
2SDD = ∑𝑖(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′

𝑖𝑡�̂� − 𝐷𝑖𝑡 ̂𝜏))2 =
�̂�2

BJS + ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))2 + ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡�̂� − 𝐷𝑖𝑡 ̂𝜏)). Hence, the

Borusyak, Jaravel and Spiess (2024) variance estimator can be larger when ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))2 +
∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′

𝑖𝑡�̂� − 𝐷𝑖𝑡 ̂𝜏)) < 0.
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(2024) support the finding of a significant effect on one outcome (increase in subsidized
population), shown in Figure 1c.

Next, consider the Lafortune, Rothstein and Schanzenbach (2018) analysis of school
finance reforms that largely aim for “higher spending in low-income than in high-income
districts, to compensate for the out-of-school disadvantages that low-income students face.”
Their data consist of 49 states over a 25-year period, with 11 treatment cohorts consisting
of only a single state, 6 treatment cohorts consisting of only two states, and the remaining
treatment cohort consisting of only three states. While most methods agree about the resulting
sustained increase in state transfers per pupil in the lowest-income districts (Figure 1d), only
the Borusyak, Jaravel and Spiess (2024) variance estimator indicates a significant increase
for the highest-income districts, and it does so for five out of the first nine years following
the reform (Appendix Figure 7b). On average, the Borusyak, Jaravel and Spiess (2024)
approach generates standard errors that are half the size of those produced by the other
methods, and their conservative leave-out variance estimator remains infeasible. Excluding
their method, the 2SDD approach results in the smallest standard errors, followed by the
Callaway and Sant’Anna (2021) approach. We note that the estimates in Figure 2 understate
the advantage of 2SDD because the table conditions on post-treatment periods when all five
methods produce estimates, and the de Chaisemartin and d’Haultfoeuille (2024) approach
only produces treatment-effect estimates up to 10 years after the event (11 estimates instead
of 20) for all outcomes. In the periods when de Chaisemartin and d’Haultfoeuille (2024)
does not produce an estimate, the difference in standard errors between 2SDD and Sun and
Abraham (2021) nearly triples, and the difference with Callaway and Sant’Anna (2021) grows
fivefold.

Tewari (2014) studies how mortgage access changed following the removal of geographic
restrictions on banks using a dataset of 39 states over a 32-year period. The data consist
of 20 treatment cohorts, including 13 cohorts each consisting of only a single state and 3
cohorts each consisting of only two states. The Sun and Abraham (2021) approach provides
extremely precise estimates and implies a treatment effect that fluctuates between a significant
positive and significant negative effect, while the other methods always generate positive point
estimates. The de Chaisemartin and d’Haultfoeuille (2024) and Callaway and Sant’Anna
(2021) approaches show some evidence supporting a significant positive effect of deregulation
on homeownership. However, we note that only 2SDD is able to estimate the full set of
dynamic treatment effects. In particular, the Callaway and Sant’Anna (2021), Sun and
Abraham (2021), and de Chaisemartin and d’Haultfoeuille (2024) methods do not yield point
estimates for the effect of the treatment 9 years after the event. Additionally, the Callaway
and Sant’Anna (2021) and Borusyak, Jaravel and Spiess (2024) methods do not yield point
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estimates for the effect of the treatment 9–11 years before the event, the de Chaisemartin and
d’Haultfoeuille (2024) method does not yield point estimates for the effect of the treatment
6–11 years before the event. The most apparent feature of Figure 1e is the difference between
the 2SDD and Borusyak, Jaravel and Spiess (2024) approaches in the periods preceding the
event, which we discuss in Section 5.3.

Finally, Ujhelyi (2014) investigates the impact of the state-level adoption of merit-based
recruitment systems for civil service on government expenditure patterns. The data consist of
48 states over a 25-year period, with 10 treatment cohorts each consisting of only a single state,
6 treatment cohorts each consisting of only two states, and the 5 remaining treatment cohorts
each consisting of only three states. While the Sun and Abraham (2021) and de Chaisemartin
and d’Haultfoeuille (2024) methods give the widest confidence intervals on average, we tend
to find the narrowest confidence intervals using the Callaway and Sant’Anna (2021) method.
However, the precision of the Callaway and Sant’Anna (2021) estimator varies substantially
across periods.40 As Figure 1f shows, for the year of the introduction of the merit system,
their standard error is about three times larger than that of the other methods. In comparison
with Callaway and Sant’Anna (2021), the 2SDD and Borusyak, Jaravel and Spiess (2024)
approaches give slightly higher, but less variable, standard errors.

5.2 Comparison of performance across methods

5.2.1 Synthesizing results on confidence interval coverage

In the simulations from Section 4, the 2SDD and Callaway and Sant’Anna (2021) estimators
both deliver rejection rates closest to 5 percent, albeit with a larger standard error for the latter.
In Figure 2, we obtain comparable standard error estimates using the 2SDD and Callaway
and Sant’Anna (2021) estimators in four settings (He and Wang, 2017; Lafortune, Rothstein
and Schanzenbach, 2018; Tewari, 2014; Ujhelyi, 2014). However, we find substantially larger
standard errors using the Callaway and Sant’Anna (2021) estimator in the remaining settings
(Bailey and Goodman-Bacon, 2015; Deryugina, 2017), highlighting the merits of our approach.

We present a concise summary of the points discussed in the preceding section in Table 7,
which primarily focuses on comparing standard errors as a measure of performance. While
these results derive from a limited sample of empirical papers, the 2SDD estimator stands
out as a practical choice for applied researchers.

The Sun and Abraham (2021) and de Chaisemartin and d’Haultfoeuille (2024) approaches
offer notable advantages when the number of groups is large (Bailey and Goodman-Bacon,

40In addition, the Callaway and Sant’Anna (2021) method does not provide estimates for any of the
periods before the event in this application.

33



2015; Deryugina, 2017) but are outperformed by the Callaway and Sant’Anna (2021) and
2SDD estimators with a relatively large number of small cohorts (Lafortune, Rothstein and
Schanzenbach, 2018; Tewari, 2014; Ujhelyi, 2014). On the other hand, the Callaway and
Sant’Anna (2021) estimator seems to perform particularly poorly, yielding larger standard
errors, when the number of groups is large. With a medium-sized number of groups (He and
Wang, 2017), all of the methods seem to perform adequately. In five empirical applications
(with Bailey and Goodman-Bacon, 2015 as the exception), the Borusyak, Jaravel and Spiess
(2024) estimator produces smaller standard errors than 2SDD does.41

5.2.2 Consistency between standard errors

To further examine the level of consistency between the various dynamic treatment effect
estimators, we compare the standard error of each event-study coefficient with the average of
the standard errors across the other four methods for the same coefficient, normalized by
the average standard error for that coefficient. We similarly compute, for each event-study
coefficient, the difference between each method’s 𝑡-statistic and its associated leave-out mean,
normalized by the average of the absolute value of the 𝑡-statistics for that coefficient. Both
sets of normalized differences roughly follow a normal distribution. To highlight discrepancies
between the different estimators, we focus on outliers in these distributions. Outliers in
the right tail of the distribution represent imprecise estimates, while outliers in the left tail
suggest overly precise estimates.

Estimates for which a given method’s standard error diverges from its counterparts’
average standard error appear in Figure 3.42 Each row in the figure corresponds to a
single event-study coefficient for which the normalized difference falls in the top or bottom
5 percent of the distribution, along with the normalized differences for all five methods. A
negative normalized difference indicates that a method produces a more precise estimate
than its counterparts, while a positive normalized difference indicates the opposite. This
representation shows several striking patterns. First, we find the greatest number of outliers
for the Callaway and Sant’Anna (2021) estimator, despite excluding estimates for the Bailey
and Goodman-Bacon (2015) paper. Nearly all of the outliers using this method fall in the
imprecise end of the distribution. 2SDD results in the fewest outliers, mostly in cases where
it produces more conservative standard error estimates than other methods, rather than
for producing overly precise estimates. On the other hand, for the Borusyak, Jaravel and
Spiess (2024), Sun and Abraham (2021), and de Chaisemartin and d’Haultfoeuille (2024)

41The differences are significant except in two settings where the sample size of estimates is small (Table 6).
42We exclude estimates from the Bailey and Goodman-Bacon (2015) paper; otherwise, that paper would

account for all the outliers due to the large standard errors that arise when applying the Callaway and
Sant’Anna (2021) estimator in this setting.
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methods, most outliers arise because the estimates are unusually precise. For the Sun and
Abraham (2021) estimator, as previously noted, this occurs in part due to the overly precise
standard errors for the Tewari (2014) paper. For the de Chaisemartin and d’Haultfoeuille
(2024) estimator, the issue relates to its high precision in estimating short-term treatment
effects, and relatively low precision in estimating longer-term treatment effects, which we
highlight next.

5.2.3 Standard errors across periods

While the preceding discussions focus on the average standard error estimates across methods,
we now consider how the estimates within the same method vary across time since treatment.
In settings with staggered treatment timing, the presence of later-treated cohorts increases
the effective sample size for estimating shorter-run treatment effects but not longer-run
treatment effects. Thus, all methods exhibit less precision for treatment effect estimates
over longer time horizons. To compare performance along this dimension, for each paper,
we take the sample of all dynamic treatment effect estimates produced by all five methods
and regress the standard errors on indicators for time since treatment, indicators for each
method, and method-specific linear period trends. We report the difference between each
method’s linear period trend and that of 2SDD in Table 8. A positive value for a given
method indicates that it produces relatively less precise estimates of longer-term treatment
effects. In four of the empirical applications (Deryugina, 2017; Lafortune, Rothstein and
Schanzenbach, 2018; Tewari, 2014; Ujhelyi, 2014), the de Chaisemartin and d’Haultfoeuille
(2024) estimator results in significantly lower precision for longer-term effects compared to
2SDD. In three of these cases Deryugina (2017); Lafortune, Rothstein and Schanzenbach
(2018); Ujhelyi (2014), the Sun and Abraham (2021) estimator also leads to significantly
larger standard errors for longer-term treatment effects, and the same holds for the Callaway
and Sant’Anna (2021) estimator in the first two cases. Other than cases in which other
methods yield overly precise standard errors (i.e., Lafortune, Rothstein and Schanzenbach,
2018 for Borusyak, Jaravel and Spiess, 2024, and Tewari, 2014 for Sun and Abraham, 2021),
we find only two instances in which another method yields relatively greater precision for
long-run treatment effects compared to 2SDD (He and Wang, 2017 and Ujhelyi, 2014 for
Callaway and Sant’Anna, 2021) at the 10 percent significance level.

5.2.4 Consistency between 𝑡-statistics

To build on our discussion of the consistency between standard error estimates, we present
a complementary analysis of 𝑡-statistics in Figure 4. The normalized difference between 𝑡-
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statistics falls in the top or bottom 5 percent of the distribution most often for the Callaway and
Sant’Anna (2021) and de Chaisemartin and d’Haultfoeuille (2024) estimators and least often
for the 2SDD estimator. Using the top or bottom 1 percent of the distribution as the cutoff,
the de Chaisemartin and d’Haultfoeuille (2024) and Sun and Abraham (2021) estimators
result in the most outliers. Analyzing absolute 𝑡-statistics rather than normalized differences
reveals additional insights (Table 9 Panel A). Compared to the 2SDD approach, the Borusyak,
Jaravel and Spiess (2024), Sun and Abraham (2021), and de Chaisemartin and d’Haultfoeuille
(2024) estimators produce larger absolute 𝑡-statistics on average (column 1) and a higher share
of statistically significant event-study coefficients (column 2). Moreover, those estimators
produce a higher share of estimates with extreme levels of statistical significance, defined using
as thresholds the 90th percentile of the distribution (approximately 4.3, 𝑝 < 10−5) and the 99th

percentile of the distribution (approximately 7.4, 𝑝 < 10−13) of 𝑡-statistics in our sample. The
Callaway and Sant’Anna (2021) estimator leads to significantly smaller absolute 𝑡-statistics
and a significantly smaller share of significant event-study coefficients, but no significant
reduction in extreme levels of statistical significance. These conclusions continue to hold if
we use weights to adjust for differences in the number of periods for each outcome variable.
In fact, when weighting by the inverse of the number of outcomes for each paper (Table 9
Panel C), the Callaway and Sant’Anna (2021) estimator produces higher absolute 𝑡-statistics,
more significant event-study coefficients, and a greater proportion of extremely statistically
significant estimates. We also find similar results when restricting the sample to the subset
of estimates that all five estimators agree are statistically significant (Appendix Table 15), as
well as when expanding the sample to include estimates that only a subset of methods produce
and adding paper-outcome-period fixed effects (Appendix Table 16). Overall, the 2SDD
estimator appears to demonstrate more moderate performance compared to the alternatives,
particularly given the low frequency of normalized 𝑡-statistic differences in the tails (Figure 4);
this moderation places the 2SDD estimator toward the conservative end of the spectrum,
evident from its low rate of extreme 𝑡-statistics (Table 9).

5.3 Differences in pre-event coefficients

One of the most noticeable features of the event-study graphs is the difference in estimates in
the periods leading up to the event. While the de Chaisemartin and d’Haultfoeuille (2024)
and Sun and Abraham (2021) estimators tend to produce greater statistical significance in
the post-treatment period (Table 9), we do not find the same pattern in the pre-treatment
periods (Appendix Table 17), where greater statistical significance would indicate violations

36



of parallel trends.43 In the case of the Callaway and Sant’Anna (2021) estimator, we see
significantly fewer significant coefficients in the pre-treatment periods.44 This suggests that
the 2SDD and Borusyak, Jaravel and Spiess (2024) methods may offer a more conservative
approach.

The discrepancy in pre-event coefficient estimates between 2SDD and Borusyak, Jaravel
and Spiess (2024) requires further discussion. These differences do not stem from a funda-
mental distinction in the methodologies. Instead, they reflect different choices about what
pre-event coefficients to estimate, with both methods accommodating either choice. One
approach, which Borusyak, Jaravel and Spiess (2024) advocate, is to estimate the pre-event
coefficients in the first stage of estimation, which uses only untreated observations. This
approach results in more outlier standard errors (Appendix Figure 8). Another option is to
estimate them in the second stage alongside the dynamic treatment effects.

The first- and second-stage approaches would both lead to appropriate rejection rates
in our simulations. We note, however, that they estimate distinct quantities. Under the
first-stage approach, pre-event coefficients are estimated in a separate regression from and are
thus not directly comparable to the post-event coefficients. Estimates using both approaches
can still serve a useful role in testing the validity of the parallel trends assumption. When
parallel trends fails, the first- and second-stage pre-treatment coefficients identify different
parameters, although they should both approach zero when parallel trends holds. While our
event-study figures follow the convention of displaying the pre-treatment and post-treatment
period estimates on the same figure, this representation may not be as suitable for the
first-stage approach.

5.4 Comparison with TWFE

To take stock of our results, we address the concluding remarks of the recent survey by
de Chaisemartin and d’Haultfoeuille (2023), which states, “It is also important to stress that
at this stage, it is still unclear whether researchers should systematically abandon TWFE
estimators.” Our analysis provide some clarity on this issue, suggesting that 2SDD should
replace TWFE as the default approach for estimating dynamic treatment effects in settings
with staggered treatment timing.

First, for nearly one-sixth of the dynamic treatment effect estimates in our sample, the

43These comparisons exclude the period immediately preceding the event because some of the methods
(Sun and Abraham, 2021; de Chaisemartin and d’Haultfoeuille, 2024) normalize the effect in this period to
zero.

44Callaway and Sant’Anna (2021) impose a weaker parallel trends assumption than the other methods,
though applied researchers may question whether treatment cohorts could be expected to follow the same
trend as the never-treated group once they are treated if they were on different trends beforehand.
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conclusions based on the TWFE estimator—regarding whether an effect is significantly
positive, significantly negative, or insignificant—do not align with those based on any of
the heterogeneity-robust estimators.45 This is not a problem of the heterogeneity-robust
estimators simply being imprecise: In about 40 percent of these instances, the discrepancy
arises because all of the heterogeneity-robust estimates are statistically significant with
the same sign while the TWFE estimate is not significantly different from zero. While
de Chaisemartin and d’Haultfoeuille (2023) conjecture that such issues are less likely to arise
for “simple designs (e.g.: a single binary and staggered treatment),” our findings suggest that
they are not uncommon even in such settings.

Second, while other heterogeneity-robust estimators show pronounced reductions in
precision in environments with treatment effect homogeneity, the 2SDD estimator does not
share this limitation (recall Appendix Table 7). Considering the prevalence of discrepancies
between the conclusions of TWFE and heterogeneity-robust estimators highlighted above,
defaulting to an assumption of homogeneity seems unjustified. Using 2SDD with inference
via GMM yields similar results as using TWFE in settings with homogeneous treatment
effects while safeguarding against potential bias due to heterogeneity.

6 Conclusion

When adoption of a treatment is staggered across time, and the average effects of the treatment
vary by group and period, the usual difference-in-differences regression specification does not
identify an easily interpretable measure of the typical effect of the treatment. When the
duration-specific effects are also heterogeneous, neither do the coefficients from the usual
event-study specification. The ultimate source of these identification failures is that outcomes
are not necessarily linear in group, period, and treatment status, as difference-in-differences
and event-study regression specifications assume.

The two-stage approach developed in this paper is motivated by the observation that,
under parallel trends, untreated outcomes are linear in group and period effects. Those
effects are therefore identified from a first-stage regression estimated using the sample of
untreated observations. The average effect of the treatment on the treated is then identified
from a regression of outcomes on treatment status, after removing group and period effects.
This procedure transparently handles the complexities of staggered treatment adoption with
familiar and straightforward tools, analogous to traditional regression methods. Estimation

45This issue occurs in four out of the six papers for which we can estimate dynamic treatment effects using
all the methods (Bailey and Goodman-Bacon, 2015; Deryugina, 2017; Lafortune, Rothstein and Schanzenbach,
2018; Tewari, 2014), and for nearly half of the outcomes in our data.

38



and inference are simple and intuitive, and can be easily extended to a variety of different
treatment effect measures, including event studies, group-specific treatment effects, design-
based analyses, continuous treatments, and triple-difference analyses.

Monte Carlo simulations demonstrate that the two-stage estimator correctly identifies
informative average treatment effect measures, outperforming the more complex and com-
putationally demanding alternative methods. Examining these methods across a series of
empirical exercises also supports our two-stage approach to estimation and inference as a
viable and effective option for applied research. More broadly, the close relationship between
our two-stage approach and the traditional TWFE estimator suggests that the two-stage ap-
proach provides the most natural extension of the difference-in-differences method to settings
with heterogeneous treatment effects. This facilitates adaptations to a variety of problems,
and indeed, the general approach proposed in this paper has already been developed by
other authors to address settings where time-varying covariates are affected by the treatment
(Caetano et al., 2022), to interactive fixed effects models (Brown and Butts, 2023), and to
local-projections estimation (Dube et al., 2023).

39



References
Abadie, Alberto, Susan Athey, Guido W Imbens, and Jeffrey M Wooldridge. 2020.

“Sampling-Based versus Design-Based Uncertainty in Regression Analysis.” Econometrica,
88(1): 265–296. 2

Angrist, Joshua D., and Alan B. Krueger. 1999. “Chapter 23 - Empirical Strategies in
Labor Economics.” In . Vol. 3 of Handbook of Labor Economics, , ed. Orley C. Ashenfelter
and David Card, 1277–1366. Elsevier. 22

Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly harmless econometrics: An
empiricist’s companion. Princeton university press. 22

Athey, Susan, and Guido W Imbens. 2022. “Design-based analysis in difference-in-
differences settings with staggered adoption.” Journal of Econometrics, 226(1): 62–79. 3, 6,
22, 24

Bailey, Martha J, and Andrew Goodman-Bacon. 2015. “The War on Poverty’s
experiment in public medicine: Community health centers and the mortality of older
Americans.” American Economic Review, 105(3): 1067–1104. 3, 31, 33, 34, 38, 44, 46, 47,
52

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. “How much
should we trust differences-in-differences estimates?” The Quarterly journal of economics,
119(1): 249–275. , 2, 23, 24, 25

Borusyak, Kirill. 2021. “DID_IMPUTATION: Stata module to perform treatment effect
estimation and pre-trend testing in event studies.” Statistical Software Components, Boston
College Department of Economics. 25

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2021. “Revisiting event study
designs: Robust and efficient estimation.” arXiv preprint arXiv:2108.12419. 2

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2024. “Revisiting event study
designs: Robust and efficient estimation.” Review of Economic Studies. 2, 3, 4, 6, 7, 8, 12,
13, 14, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 48, 49, 53

Brown, Nicholas, and Kyle Butts. 2023. “Dynamic Treatment Effect Estimation with
Interactive Fixed Effects and Short Panels.” Mimeo. 39

Butts, Kyle. 2021. “DID2S: Stata module to estimate a TWFE model using the two-stage
difference-in-differences approach.” Statistical Software Components S458951, Revised: Apr
28, 2023. 1, 25

Butts, Kyle, and John Gardner. 2022. “did2s: Two-Stage Difference-in-Differences.” R
Journal, 14(3): 162–173. 14

Caetano, Carolina, Brantly Callaway, Stroud Payne, and Hugo Sant’Anna Ro-
drigues. 2022. “Difference in differences with time-varying covariates.” arXiv preprint
arXiv:2202.02903. 9, 39

40



Callaway, Brantly, and Pedro HC Sant’Anna. 2021. “Difference-in-differences with
multiple time periods.” Journal of Econometrics, 225(2): 200–230. 1, 2, 3, 9, 10, 13, 20, 21,
25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 48, 49, 53

Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer. 2019. “The
effect of minimum wages on low-wage jobs.” The Quarterly Journal of Economics,
134(3): 1405–1454. 4

Chiu, Albert, Xingchen Lan, Ziyi Liu, and Yiqing Xu. 2023. “What to do (and not
to do) with causal panel analysis under parallel trends: Lessons from a large reanalysis
study.” arXiv preprint arXiv:2309.15983. 4

de Chaisemartin, Clément, and Xavier d’Haultfoeuille. 2020. “Two-way fixed
effects estimators with heterogeneous treatment effects.” American Economic Review,
110(9): 2964–2996. 1, 3, 6, 7, 8, 13, 20, 48

de Chaisemartin, Clément, and Xavier d’Haultfoeuille. 2023. “Two-way fixed ef-
fects and differences-in-differences with heterogeneous treatment effects: A survey.” The
Econometrics Journal, 26(3): C1–C30. 37, 38

de Chaisemartin, Clément, and Xavier d’Haultfoeuille. 2024. “Difference-in-differences
estimators of intertemporal treatment effects.” Review of Economics and Statistics, 1–45.
2, 3, 13, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 48, 49, 53

de Chaisemartin, Clément, Xavier D’Haultfoeuille, Mélitine Malézieux, and
Doulo Sow. 2023. “DID_MULTIPLEGT_DYN: Stata module to estimate event-study
Difference-in-Difference (DID) estimators in designs with multiple groups and periods,
with a potentially non-binary treatment that may increase or decrease multiple times.”
Statistical Software Components, Boston College Department of Economics. 25

Deryugina, Tatyana. 2017. “The fiscal cost of hurricanes: Disaster aid versus social
insurance.” American Economic Journal: Economic Policy, 9(3): 168–198. 3, 31, 33, 34,
35, 38, 44, 52

Deshpande, Manasi, and Yue Li. 2019. “Who is screened out? Application costs and
the targeting of disability programs.” American Economic Journal: Economic Policy,
11(4): 213–248. 4

Dube, Arindrajit, Daniele Girardi, Oscar Jorda, and Alan M Taylor. 2023. “A
local projections approach to difference-in-differences event studies.” National Bureau of
Economic Research. 2, 4, 39

Dumont, Michel, Glenn Rayp, Olivier Thas, and Peter Willeme. 2005. “Correcting
standard errors in two-stage estimation procedures with generated regressands.” Oxford
Bulletin of Economics and Statistics, 67(3): 421–433. 13

Gallagher, Justin. 2014. “Learning about an infrequent event: Evidence from flood insurance
take-up in the United States.” American Economic Journal: Applied Economics, 206–233.
52

41



Gardner, John. 2020. “Two-stage differences in differences.” Mimeo. , 2

Gardner, John, Neil Thakral, Linh Tô, and Luther Yap. 2024. “Two-stage differences
in differences.” Mimeo. 48

Gibbons, Charles E, Juan Carlos Suárez Serrato, and Michael B Urbancic. 2018.
“Broken or fixed effects?” Journal of Econometric Methods, 8(1): 20170002. 3

Goodman-Bacon, Andrew. 2021. “Difference-in-differences with variation in treatment
timing.” Journal of Econometrics, 225(2): 254–277. 3, 6, 7, 8

Gormley, Todd A, and David A Matsa. 2011. “Growing out of trouble? Corporate
responses to liability risk.” The Review of Financial Studies, 24(8): 2781–2821. 4

Hansen, Lars Peter. 1982. “Large sample properties of generalized method of moments
estimators.” Econometrica: Journal of the econometric society, 1029–1054. 14

He, Guojun, and Shaoda Wang. 2017. “Do college graduates serving as village officials
help rural China?” American Economic Journal: Applied Economics, 9(4): 186–215. 31,
33, 34, 35, 44, 52

Imai, Kosuke, and In Song Kim. 2021. “On the use of two-way fixed effects regression
models for causal inference with panel data.” Political Analysis, 29(3): 405–415. 3, 6

Kuziemko, Ilyana, Katherine Meckel, and Maya Rossin-Slater. 2018. “Does managed
care widen infant health disparities? Evidence from Texas Medicaid.” American Economic
Journal: Economic Policy, 10(3): 255–283. 30, 52

Lafortune, Julien, Jesse Rothstein, and Diane Whitmore Schanzenbach. 2018.
“School finance reform and the distribution of student achievement.” American Economic
Journal: Applied Economics, 10(2): 1–26. 25, 26, 27, 32, 33, 34, 35, 38, 44, 52

Liu, Licheng, Ye Wang, and Yiqing Xu. 2019. “A Practical Guide to Counterfactual
Estimators for Causal Inference with Time-Series Cross-Sectional Data.” 2

Liu, Licheng, Ye Wang, and Yiqing Xu. 2022. “A Practical Guide to Counterfactual
Estimators for Causal Inference with Time-Series Cross-Sectional Data.” American Journal
of Political Science. 12, 13

Miller, Douglas L. 2023. “An Introductory Guide to Event Study Models.” Journal of
Economic Perspectives, 37(2): 203–230. 25

Newey, Whitney K. 1984. “A method of moments interpretation of sequential estimators.”
Economics Letters, 14(2-3): 201–206. 14

Newey, Whitney K, and Daniel McFadden. 1994. “Large sample estimation and
hypothesis testing.” Handbook of econometrics, 4: 2111–2245. 14, 18

Rios-Avila, Fernando, Arne J. Nagengast, and Yoto V. Yotov. 2022. “JWDID: Stata
module to estimate Difference-in-Difference models using Mundlak approach.” 25

42



Rios-Avila, Fernando, Pedro Sant’Anna, and Brantly Callaway. 2023. “CSDID: Stata
module for the estimation of Difference-in-Difference models with multiple time periods.”
25

Roth, Jonathan. 2024. “Interpreting event-studies from recent difference-in-differences
methods.” Mimeo. 13

Sant’Anna, Pedro HC, and Jun Zhao. 2020. “Doubly robust difference-in-differences
estimators.” Journal of Econometrics, 219(1): 101–122. 9

Sun, Liyang. 2021. “EVENTSTUDYINTERACT: Stata module to implement the interaction
weighted estimator for an event study.” Statistical Software Components, Boston College
Department of Economics. 25

Sun, Liyang, and Sarah Abraham. 2021. “Estimating dynamic treatment effects in event
studies with heterogeneous treatment effects.” Journal of Econometrics, 225(2): 175–199.
2, 3, 11, 12, 20, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 48, 49, 52, 53

Tewari, Ishani. 2014. “The distributive impacts of financial development: Evidence from
mortgage markets during us bank branch deregulation.” American Economic Journal:
Applied Economics, 6(4): 175–196. 32, 33, 34, 35, 38, 44, 52

Thakral, Neil, and Linh Tô. 2020. “Anticipation and consumption.” Available at SSRN
3756188. 2

Thakral, Neil, and Linh T Tô. 2023. “When Are Estimates Independent of Measurement
Units?” Mimeo. 24

Ujhelyi, Gergely. 2014. “Civil service rules and policy choices: evidence from US state
governments.” American Economic Journal: Economic Policy, 6(2): 338–380. 33, 34, 35,
44, 52

Wooldridge, Jeffrey M. 2021. “Two-way fixed effects, the two-way mundlak regression,
and difference-in-differences estimators.” Available at SSRN 3906345. 2, 4, 25, 26, 27, 29,
48, 49

Yitzhaki, Shlomo. 1996. “On using linear regressions in welfare economics.” Journal of
Business & Economic Statistics, 14(4): 478–486. 22

43



Figure 1: Empirical applications: Event-study estimates

(a) Bailey and Goodman-Bacon (2015) (b) Deryugina (2017)

(c) He and Wang (2017) (d) Lafortune, Rothstein and Schanzenbach
(2018)

(e) Tewari (2014) (f) Ujhelyi (2014)

Note: This table reports event-study estimates from applying each estimator to the first event-study
specification for each of the main empirical settings in Table 5.
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Figure 2: Empirical applications: Comparison of standard errors

Note: This figure reports the average standard error across all dynamic treatment effect estimates for each
replicated paper and each estimation method. The set of papers corresponds to the main empirical settings
from Table 5.
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Figure 3: Empirical applications: Outlier post-treatment normalized standard error differences

Note: Each panel of this figure corresponds to one of the five estimators we investigate. Each entry for a given
estimator corresponds to an estimate (associated with a particular post-treatment period, outcome variable,
and empirical setting) for which that estimator’s standard error significantly deviates from the average of the
other methods’ standard errors. Each entry displays the difference between each method’s standard error
and its associated leave-out mean, normalized by the average of the absolute value of the standard errors
for that coefficient. The criterion for determining that an estimator’s standard error significantly deviates
from that of the other estimators is that the normalized difference falls in the top 2.5 percent or bottom
2.5 percent of the distribution (vertical bars closer to zero as thresholds), excluding estimates from the Bailey
and Goodman-Bacon (2015) paper. The numbers in the bottom left of each panel indicate the number of
such outlier estimates at the 5 percent level and 1 percent level, respectively.
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Figure 4: Empirical applications: Outlier post-treatment normalized 𝑡-statistic differences

Note: Each panel of this figure corresponds to one of the five estimators we investigate. Each entry for a given
estimator corresponds to an estimate (associated with a particular post-treatment period, outcome variable,
and empirical setting) for which that estimator’s 𝑡-statistic significantly deviates from the average of the other
methods’ 𝑡-statistics. Each entry displays the difference between each method’s 𝑡-statistic and its associated
leave-out mean, normalized by the average of the absolute value of the 𝑡-statistics for that coefficient. The
criterion for determining that an estimator’s 𝑡-statistic significantly deviates from that of the other estimators
is that the normalized difference falls in the top 2.5 percent or bottom 2.5 percent of the distribution (vertical
bars closer to zero as thresholds), excluding estimates from the Bailey and Goodman-Bacon (2015) paper.
The numbers in the bottom left of each panel indicate the number of such outlier estimates at the 5 percent
level and 1 percent level, respectively.
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Table 1: Comparison of approaches to estimation and inference

Group-
independent
estimation

Group-
independent

inference

Analytical
standard

errors

Gardner et al.
(2024) ✓ ✓ ✓

Borusyak, Jaravel
and Spiess (2024) ✓ × ✓

Callaway and
Sant’Anna (2021) × × ×

Sun and Abraham
(2021) × × ✓

de Chaisemartin
and d’Haultfoeuille
(2024)

× × ✓

de Chaisemartin
and d’Haultfoeuille
(2020)

× × ×

Wooldridge (2021) × × ✓

Note: In the first two columns, procedures that estimate group effects or variances
separately are denoted × while procedures that do not are denoted ✓. In the third
column, procedures that use analytical standard errors are denoted ✓ while procedures
that bootstrap in their implementation are denoted ×.
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Table 2: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.79 0.1029 0.0063 0.1001 0.10
1 5.39 0.1029 0.0062 0.1047
2 4.59 0.1041 -0.0075 0.1020
3 5.39 0.1043 0.0041 0.1029
4 5.79 0.1049 0.0038 0.1049

BJS 0 12.97 0.0743 -0.0016 0.0971 0.20
1 16.77 0.0751 -0.0036 0.1046
2 15.37 0.0760 -0.0010 0.1074
3 12.97 0.0759 -0.0006 0.1003
4 16.37 0.0773 -0.0126 0.1049

BJS (leave out) 0 0.40 0.1405 -0.0016 0.0971 0.19
1 1.20 0.1408 -0.0036 0.1046
2 1.80 0.1423 -0.0010 0.1074
3 1.00 0.1412 -0.0006 0.1003
4 0.80 0.1432 -0.0126 0.1049

CS 0 2.99 0.1436 -0.0004 0.1340 31.07
1 5.39 0.1420 0.0065 0.1381
2 4.39 0.1419 -0.0001 0.1302
3 3.59 0.1433 0.0055 0.1351
4 4.99 0.1433 -0.0026 0.1360

SA 0 0.60 0.1666 0.0022 0.1274 46.95
1 1.60 0.1667 0.0013 0.1415
2 1.80 0.1672 -0.0138 0.1373
3 1.80 0.1676 -0.0023 0.1358
4 1.60 0.1681 -0.0012 0.1394

dCDH 0 4.99 0.1378 0.0013 0.1280 3.64
1 6.39 0.1374 0.0016 0.1421
2 5.19 0.1390 -0.0126 0.1371
3 6.59 0.1380 -0.0010 0.1374
4 5.19 0.1389 -0.0011 0.1399

W 0 4.19 0.1345 0.0019 0.1286 87.60
1 6.79 0.1343 0.0009 0.1433
2 5.99 0.1358 -0.0141 0.1384
3 5.99 0.1347 -0.0027 0.1363
4 6.79 0.1358 -0.0016 0.1398

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated
states in each of those years. The data consist of log wages for women between the ages of 25 and 50 from
the CPS. Treatment effects are heterogeneous and drawn from a normal distribution, with an average
value drawn uniformly at random between 2 and 5 percent of the average wage and a standard deviation
equal to 10 percent of the average wage. Rejection rate denotes the percentage of simulations in which
the specified parameter estimate significantly differs from the true value at the 5 percent significance
level. S.E. denotes the standard error averaged across all simulations. Bias denotes the average difference
between the point estimate and the true value. RMSE denotes the root-mean-square error. GTTY
refers to the method proposed in the current paper. BJS and BJS (leave out) refer to the default
asymptotic standard errors and leave-out versions from Borusyak, Jaravel and Spiess (2024). CS, SA,
dCDH, and W refer to the methods proposed by Callaway and Sant’Anna (2021), Sun and Abraham
(2021), de Chaisemartin and d’Haultfoeuille (2024), and Wooldridge (2021), respectively. Average speed
per simulation using the corresponding Stata package for each method is reported in seconds.
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Table 3: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 30 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.39 0.1014 -0.0006 0.0962 0.07
1 5.59 0.1024 -0.0006 0.1016
2 3.79 0.1030 -0.0005 0.1011
3 4.59 0.1030 0.0006 0.1029
4 6.99 0.1040 0.0074 0.1076

BJS 0 27.94 0.0550 -0.0029 0.1041 0.21
1 25.95 0.0554 0.0077 0.0961
2 29.74 0.0551 -0.0078 0.1041
3 28.54 0.0566 0.0002 0.1028
4 25.35 0.0573 0.0012 0.0984

CS 0 3.79 0.1404 0.0015 0.1327 47.32
1 6.39 0.1398 0.0092 0.1459
2 5.99 0.1407 0.0040 0.1398
3 4.19 0.1412 -0.0046 0.1385
4 4.79 0.1418 0.0049 0.1438

SA 0 1.40 0.1654 -0.0016 0.1370 143.55
1 1.20 0.1663 -0.0036 0.1371
2 1.40 0.1677 -0.0011 0.1350
3 1.60 0.1666 -0.0017 0.1347
4 2.00 0.1693 0.0068 0.1372

dCDH 0 22.95 0.0924 -0.0024 0.1403 3.64
1 20.36 0.0938 -0.0024 0.1399
2 17.96 0.0949 -0.0023 0.1370
3 19.36 0.0938 -0.0011 0.1354
4 18.36 0.0965 0.0060 0.1394

W 0 12.38 0.1155 -0.0017 0.1378 180.58
1 11.18 0.1173 -0.0037 0.1373
2 10.78 0.1187 -0.0012 0.1354
3 10.38 0.1180 -0.0018 0.1349
4 9.98 0.1210 0.0067 0.1376

Note: The table reports results from 501 simulations of 40 treated states over 30 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Table 4: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated over 20
years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.19 0.1289 0.0009 0.1269 0.11
1 4.59 0.1297 0.0073 0.1302
2 4.39 0.1300 -0.0105 0.1255
3 4.79 0.1307 0.0035 0.1262
4 4.99 0.1307 0.0012 0.1272

BJS 0 16.17 0.0938 -0.0000 0.1301 0.22
1 14.57 0.0940 -0.0017 0.1231
2 16.77 0.0945 0.0023 0.1334
3 14.77 0.0944 -0.0041 0.1266
4 16.37 0.0970 0.0021 0.1313

BJS (leave out) 0 1.40 0.1774 -0.0000 0.1301 0.24
1 0.60 0.1765 -0.0017 0.1231
2 1.20 0.1767 0.0023 0.1334
3 1.40 0.1758 -0.0041 0.1266
4 0.60 0.1797 0.0021 0.1313

CS 0 3.79 0.1796 -0.0104 0.1702 32.34
1 4.19 0.1799 -0.0008 0.1771
2 4.79 0.1785 0.0010 0.1668
3 4.59 0.1791 0.0044 0.1703
4 2.79 0.1800 -0.0033 0.1671

SA 0 1.80 0.2087 -0.0036 0.1685 55.77
1 1.80 0.2101 0.0013 0.1799
2 1.80 0.2098 -0.0170 0.1745
3 1.40 0.2090 -0.0031 0.1681
4 1.60 0.2092 -0.0034 0.1762

dCDH 0 5.39 0.1721 -0.0050 0.1682 3.75
1 6.19 0.1731 0.0020 0.1815
2 5.79 0.1731 -0.0163 0.1753
3 5.19 0.1724 -0.0024 0.1689
4 5.79 0.1728 -0.0046 0.1774

W 0 5.79 0.1683 -0.0043 0.1696 77.76
1 6.99 0.1692 0.0007 0.1815
2 5.39 0.1695 -0.0175 0.1766
3 5.99 0.1685 -0.0039 0.1697
4 6.19 0.1694 -0.0042 0.1773

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated
states in each of those years. The outcome data are drawn i.i.d. from a normal distribution with the
same mean and variance as that of the wage data used in Table 2. See the note accompanying Table 2
for further information.
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Table 5: Empirical applications: List of references

Paper Groups Periods Treatment
cohorts

Always
treated

Never
treated

Tewari (2014) 39 states 1976–2007 20 ✓
Ujhelyi (2014) 48 states 1960–1984 21 ✓ ✓
Bailey and
Goodman-Bacon (2015) 3062 counties 1959–1998 9 ✓

Deryugina (2017) 1183 counties 1969–2012 15 ✓
He and Wang (2017) 255 villages 2000–2011 8 ✓ ✓
Kuziemko, Meckel and
Rossin-Slater (2018) 250 counties 1993–2001 5 ✓

Lafortune, Rothstein and
Schanzenbach (2018) 49 states 1990–2014 18 ✓

Note: This table describes the set of empirical papers that we reexamine using publicly available data
and code. We exclude one from the set of main empirical settings because the paper reports treatment
effect estimates at the yearly level while the timing of treatment is at the monthly level (Kuziemko,
Meckel and Rossin-Slater, 2018); see Appendix D for further discussion. The list derives from Table 1 of
Sun and Abraham (2021), which reports eight papers with variation in treatment timing. We exclude
one paper (Gallagher, 2014) due to the presence of multiple treatments.
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Table 6: Empirical applications: Comparison of standard errors

BGB2015 D2017 HW2017 LRS2018 T2014 U2014
BJS 7.2748 -0.0012 -0.0018 -171.9702 -0.0010 -0.0010

(4.7166) (0.0004) (0.0005) (11.5239) (0.0013) (0.0011)
CS 516.3992 0.0059 -0.0088 6.2230 -0.0018 -0.0020

(272.8267) (0.0029) (0.0065) (30.8968) (0.0014) (0.0033)
SA -2.8849 -0.0042 -0.0137 55.9069 -0.0104 0.0067

(1.6728) (0.0025) (0.0054) (37.9005) (0.0008) (0.0021)
dCDH 0.6955 -0.0038 -0.0167 40.3952 0.0001 0.0054

(0.4478) (0.0025) (0.0090) (37.5220) (0.0018) (0.0021)

Number of
outcomes 5 15 4 7 1 1

Number of
periods 11 11 4 11 9 6

Covariates ✓ ✓ ✓
Weights ✓ ✓ ✓

Note: The data consist of standard error estimates from applying the estimator listed in each
row to the empirical settings in Table 5. Each column reports the results from regressing
standard error estimates for the specified paper on indicators for each method, with 2SDD as
the omitted category. BJS refers to the imputation estimator with default asymptotic standard
errors from Borusyak, Jaravel and Spiess (2024), and CS, SA, and dCDH refer to the methods
proposed by Callaway and Sant’Anna (2021), Sun and Abraham (2021), and de Chaisemartin and
d’Haultfoeuille (2024), respectively. The number of periods denotes the number of post-treatment
coefficients each paper estimates (common across all outcome variables). The last two rows of
the table indicate whether the event-study specification in each paper includes covariates and
uses sample weights (common across all outcome variables). We report heteroskedasticity-robust
standard errors in parentheses, and standard errors are adjusted for clustering at the outcome
level for papers which contain estimates for more than one outcome variable.
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Table 7: Empirical applications: Comparison of standard errors

BGB2015 D2017 HW2017 LRS2018 T2014 U2014
GTTY (+)

Small s.e.
(+)
Significant

(+)
Small s.e.

(+)
Full set of
estimates

BJS (-)
Large s.e.

(+)
Significant

(-)
Overly
small s.e.

CS (-)
Largest s.e.

(-)
Largest s.e.

(+)
Small s.e.,
significant

(+)
Smallest
s.e.

SA (+)
Smallest
s.e.

(+)
Smallest
s.e.

(-)
Largest s.e.

(-)
Overly
small s.e.

(-)
Largest s.e.

dCDH (+)
Small s.e.

(+)
Small s.e.

(+)
Significant

(-)
Missing
estimates

(+)
Significant

(-)
Large s.e.

Note: This table summarizes the findings discussed in Section 5.1. The full set of event-study estimates
appear in Figure 1 and appendix figures 3 to 7.
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Table 8: Empirical applications: Change in standard errors across treatment periods

BGB2015 D2017 HW2017 LRS2018 T2014 U2014
BJS ×period 1.1382 -0.0000 -0.0003 -12.6865 0.0002 -0.0002

(0.7426) (0.0000) (0.0006) (4.0584) (0.0002) (0.0007)
CS ×period -12.6385 0.0011 -0.0115 15.6287 0.0001 -0.0035

(9.2480) (0.0003) (0.0032) (4.6711) (0.0001) (0.0019)
SA ×period -0.2929 0.0003 -0.0008 22.8739 -0.0009 0.0016

(0.1681) (0.0001) (0.0031) (6.7402) (0.0002) (0.0007)
dCDH ×period 0.1798 0.0004 -0.0020 24.0197 0.0005 0.0016

(0.1225) (0.0001) (0.0054) (7.3067) (0.0003) (0.0007)
Note: Each column reports estimates of method-specific linear period trends from a regression of
standard error estimates on period fixed effects, method fixed effects, and method-specific linear
period trends, corresponding to each of the papers in Table 5. The regression omits the linear
period trend for the 2SDD estimator. See Table 6 for additional details.
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Table 9: Empirical applications: Comparison of 𝑡-statistics (post-treatment periods)

|𝑡| 𝟙{|𝑡|>1.96} 𝟙{|𝑡|>𝑝90} 𝟙{|𝑡|>𝑝99}

Panel A: Unweighted
BJS 0.5056 0.0762 0.0976 0.0244

(0.1280) (0.0381) (0.0238) (0.0085)
CS -0.2912 -0.0823 -0.0122 -0.0000

(0.0983) (0.0361) (0.0173) (0.0000)
SA 0.9228 0.0884 0.1159 0.0213

(0.2440) (0.0381) (0.0246) (0.0080)
dCDH 0.5061 0.1067 0.0945 0.0122

(0.1175) (0.0382) (0.0237) (0.0061)

Panel B: Weighted (outcomes)
BJS 0.4607 0.0760 0.0882 0.0220

(0.1217) (0.0393) (0.0220) (0.0077)
CS -0.2664 -0.0765 -0.0064 0.0000

(0.0966) (0.0368) (0.0168) (0.0000)
SA 0.9153 0.0745 0.1084 0.0230

(0.2641) (0.0391) (0.0232) (0.0086)
dCDH 0.4339 0.0851 0.0854 0.0110

(0.1141) (0.0391) (0.0219) (0.0055)

Panel C: Weighted (papers)
BJS 0.3373 0.0808 0.0635 0.0162

(0.1409) (0.0568) (0.0154) (0.0060)
CS 0.1307 0.0399 0.0553 -0.0000

(0.1783) (0.0618) (0.0379) (0.0000)
SA 3.4792 0.1622 0.1833 0.1121

(1.2457) (0.0612) (0.0426) (0.0416)
dCDH 0.2260 0.0359 0.0380 0.0040

(0.1325) (0.0499) (0.0118) (0.0021)
Note: This table describes the relationship between each estimator and the absolute 𝑡-statistics
of the dynamic treatment effect estimates from applying each estimator to the empirical settings
in Table 5. Each observation is an estimate of a treatment effect in each post-treatment period
associated with each outcome in each paper using each of the five methods. The first column uses the
absolute value of the 𝑡-statistic as the dependent variable. The second column uses an indicator for
significant 𝑡-statistics using a conventional threshold (the absolute value of the 𝑡-statistic exceeding
1.96) as the dependent variable. The last two columns use an indicator for more extreme levels of
statistical significance (the absolute value of the 𝑡-statistic exceeding the 90th and 99th percentiles,
respectively, of the distribution of estimates in our sample) as the dependent variable; the 90th

percentile is approximately 4.3 and the 99th percentile is approximately 7.4. All specifications use
a balanced sample of coefficients that all methods can estimate. The estimates in panels B and C
use the inverse of the number of periods for each outcome variable and the inverse of the number
of outcomes for each paper, respectively, as weights. We report heteroskedasticity-robust standard
errors in parentheses.
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A Stata syntax

Suppose that y refers to the outcome, year the year, id the group, and d treatment status.
The two-stage difference-in-differences estimator can be obtained, along with valid cluster-robust
asymptotic standard errors, via GMM using the single Stata command:

gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*(1-d)) ///
(eq2: y - {xb:} - {xg:} - {delta}*d), ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: d) winitial(identity) ///
onestep quickderivatives vce(cluster id)

Variations on the two-stage estimator (such as the the two-stage event-study estimator) can be
obtained using similar syntax. The did2s package (Butts, 2021) implements the same procedure
more efficiently and scales more easily with individual fixed effects.
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B Proofs

Derivation of Equation (3). From Equation (1), we can write

𝑌𝑔𝑝𝑖𝑡 = 𝜆𝑔 + 𝛼𝑝 +
𝐺

∑
ℎ=1

𝑃
∑
𝑞=ℎ

𝛽ℎ𝑞1(ℎ, 𝑞)𝑔𝑝𝑖𝑡 + 𝑒𝑔𝑝𝑖𝑡, (1)

where 1(ℎ, 𝑞)𝑔𝑝𝑖𝑡 is an indicator for whether observation (𝑔, 𝑝, 𝑖, 𝑡) corresponds to group ℎ and
period 𝑞, and 𝔼[𝑒𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, (1(ℎ, 𝑞)𝑔𝑝𝑖𝑡)] = 0.

Let �̃�𝑔𝑝 denote the residual from a population regression of 𝐷𝑔𝑝 on group and period fixed
effects. By the Frisch-Waugh-Lovell theorem, the coefficient on 𝐷𝑔𝑝 from a population regression
of 𝑌𝑔𝑝𝑖𝑡 on 𝐷𝑔𝑝 and group and period effects is

𝛽∗ =
𝔼[�̃�𝑔𝑝𝑌𝑔𝑝𝑖𝑡)]

𝔼[�̃�2
𝑔𝑝]

=
𝔼[�̃�𝑔𝑝 ∑𝐺

ℎ=1 ∑𝑃
𝑞=ℎ 𝛽ℎ𝑞1(ℎ, 𝑞)𝑔𝑝𝑖𝑡]

𝔼[�̃�2
𝑔𝑝]

=
𝐺

∑
ℎ=1

𝑃
∑
𝑞=ℎ

𝔼[�̃�𝑔𝑝1(ℎ, 𝑞)𝑔𝑝𝑖𝑡]𝛽ℎ𝑞

𝔼[�̃�2
𝑔𝑝]

=
𝐺

∑
𝑔=1

𝑃
∑
𝑝=𝑔

𝜔𝑔𝑝𝛽𝑔𝑝.

where 𝜔𝑔𝑝 is the coefficient from a regression of 1(ℎ, 𝑞)𝑔𝑝𝑖𝑡 on 𝐷𝑔𝑝 and group and period fixed
effects. The second equality uses the facts that 𝑒𝑔𝑝𝑖𝑡 is mean-independent of the regressors and
that �̃�𝑔𝑝 is uncorrelated with group and period effects by construction.1

The weight 𝜔𝑔𝑝 that difference in differences places on 𝛽𝑔𝑝 is the coefficient on 𝐷𝑔𝑝 from a
regression of 1(𝑔, 𝑝)𝑔𝑝𝑖𝑡 on 𝐷𝑔𝑝 and group and period fixed effects. By the Frisch-Waugh-Lovell
theorem, this is equivalent to the slope coefficient from a population regression of 1(𝑔, 𝑝)𝑔𝑝𝑖𝑡 on the
residual from an auxiliary regression of 𝐷𝑔𝑝 on group and period effects. Using the two-way within
or double-demeaned transformation, this residual can be expressed as

�̃�𝑔𝑝 = [𝐷𝑔𝑝 − Pr(𝐷𝑔𝑝 = 1 ∣ 𝑔)] − [Pr(𝐷𝑔𝑝 = 1 ∣ 𝑝) − Pr(𝐷𝑔𝑝 = 1)]. (2)

1This, and the related result in Sun and Abraham (2021), can also be established by thinking of the term
∑𝐺

ℎ=1 ∑𝑃
𝑞=ℎ 𝛽ℎ𝑞1(ℎ, 𝑞)𝑔𝑝𝑖𝑡 in Equation (1) as an omitted variable, and taking its projection onto the included

regressors.
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Since 𝔼[�̃�2
𝑔𝑝] = 𝔼[�̃�𝑔𝑝𝐷𝑔𝑝], 𝜔𝑔𝑝 can also be expressed as

𝜔𝑔𝑝 =
𝔼[1(𝑔, 𝑝)𝑔𝑝𝑖𝑡�̃�𝑔𝑝]

Var[�̃�𝑔𝑝]

=
𝔼[�̃�𝑔𝑝 ∣ 1(𝑔, 𝑝)𝑔𝑝𝑖𝑡 = 1] Pr(1(𝑔, 𝑝)𝑔𝑝𝑖𝑡 = 1)

𝔼[�̃�𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] Pr(𝐷𝑔𝑝 = 1)

=
[1 − Pr(𝐷𝑔𝑝 = 1 ∣ 𝑔) − (Pr(𝐷𝑔𝑝 = 1 ∣ 𝑝) − Pr(𝐷𝑔𝑝 = 1))] Pr(𝑔, 𝑝)

∑𝐺
𝑔′=1 ∑𝑃

𝑝′=𝑔′[1 − Pr(𝐷𝑔′𝑝′ = 1 ∣ 𝑔′) − (Pr(𝐷𝑔′𝑝′ = 1 ∣ 𝑝′) − Pr(𝐷𝑔′𝑝′ = 1))] Pr(𝑔′, 𝑝′)
,

where the final equality uses Equation (2).

Lemma B.1. Under Assumptions 1 and 2, ̂𝛾
𝑝
−→ 𝛾 and ̂𝛽

𝑝
−→ 𝛽.

Proof of Lemma B.1. We have

̃𝑌0𝑖 − �̃�0𝑖𝛾 =
⎡
⎢⎢
⎣

( ̃𝜀𝑖1) (1 − 𝐷𝑖1)
⋮

( ̃𝜀𝑖𝑇) (1 − 𝐷𝑖𝑇)

⎤
⎥⎥
⎦

=∶ ̃𝜀0𝑖.

Hence,

̂𝛾 = 𝛾 + ( 1
𝑁 ∑

𝑖
�̃�′

0𝑖�̃�0𝑖)
−1

( 1
𝑁 ∑

𝑖
�̃�′

0𝑖 ̃𝜀0𝑖) .

Due to Assumption 1.3, and the existence of second moments in Assumption 2.2, by the weak
law of large numbers (WLLN), 1

𝑁 ∑𝑖 �̃�′
0𝑖�̃�0𝑖

𝑝
−→ 𝔼[�̃�′

0𝑖�̃�0𝑖]. With Assumption 1.1 on correct
specification and the WLLN, 𝔼[�̃�′

0𝑖 ̃𝜀0𝑖] = 0. Hence, 1
𝑁 ∑𝑖 �̃�′

0𝑖 ̃𝜀0𝑖
𝑝
−→ 0. Then, since 𝔼[�̃�′

0𝑖�̃�0𝑖] is
invertible by Assumption 2.2, by the continuous mapping theorem, ̂𝛾

𝑝
−→ 𝛾.

The OLS estimator is:

̂𝛽 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�𝑖𝑡 ̂𝛾))

= (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 (𝛽𝑖𝑡𝐷𝑖𝑡 + ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾)))

= (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡𝛽𝑖𝑡) + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾))) .

It can be shown that (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡)
−1

(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡𝛽𝑖𝑡) − 𝛽
𝑝
−→ 0. Since 𝛽 = 𝐸[𝛽𝑖𝑡 ∣
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𝐷𝑖𝑡 = 1] = 𝐸[𝐷𝑖𝑡𝛽𝑖𝑡]/ Pr(𝐷𝑖𝑡 = 1),

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡𝛽𝑖𝑡) − 𝛽

= ( 1
𝑁𝑇

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

( 1
𝑁𝑇

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡𝛽𝑖𝑡) −
𝐸[𝐷𝑖𝑡𝛽𝑖𝑡]

Pr(𝐷𝑖𝑡 = 1) = 𝑜𝑃(1).

Due to Assumptions 2.1 and 2.2, (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡)
−1

(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡�̃�𝑖𝑡) = 𝑂𝑃(1) is bounded
in probability, so, using the first-stage consistency result that ̂𝛾

𝑝
−→ 𝛾,

̂𝛽 = 𝛽 + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾))) + 𝑜𝑃(1)

= 𝛽 + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ̃𝜀𝑖𝑡) + 𝑜𝑃(1).

Due to Assumptions 1.2 and 1.3, 1
𝑁 ∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡

𝑝
−→ Σ𝐷 > 0. 𝐷𝑖𝑡 ̃𝜀𝑖𝑡 are also independent over

individuals. Using a similar argument as before, 1
𝑁 ∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡 ̃𝜀𝑖𝑡

𝑝
−→ 0. Then, ̂𝛽 = 𝛽 + 𝑜𝑃(1) as

required.

Proof of Theorem 1. If the conditions of Theorem 6.1 of Newey and McFadden (1994) are satisfied,
the result automatically follows. Hence, the proof verifies its conditions. Due to Lemma B.1, we
already have ̂𝛾

𝑝
−→ 𝛾 and ̂𝛽

𝑝
−→ 𝛽, fulfilling the probability limit requirement. Next, we want to show

the following:

1. 𝛽 is in the interior of the parameter space.

2. 𝑔(𝑍; 𝛾, 𝛽) is continuously differentiable around 𝛽.

3. 𝔼[𝑔(𝑍; 𝛾, 𝛽)] = 0 and 𝔼[‖𝑔(𝑍; 𝛾, 𝛽)‖2] is finite.

4. 𝔼[sup(𝛾,𝛽) ‖∇𝑔(𝑍; 𝛾, 𝛽)‖] < ∞, where ∇𝑔(𝑍; 𝛾, 𝛽) is the derivative of 𝑔 with respect to
(𝛾′, 𝛽).

5. 𝔼[∇𝑔(𝑍; 𝛾, 𝛽)]′𝔼[∇𝑔(𝑍; 𝛾, 𝛽)] is nonsingular.

6. 1
𝑁 ∑𝑁

𝑖=1 𝑔 (𝑍𝑖; ̂𝛾, 𝛽)
𝑝
−→ 0 and 1

𝑁 ∑𝑁
𝑖=1 ∑𝑇

𝑡=1 (�̃�′
0𝑖 ( ̃𝑌0𝑖 − �̃�0𝑖𝛾))

𝑝
−→ 0.

Condition 1 is straightforward as long as no further constraints are imposed on 𝛽, which is true in the
setting. For condition 2, observe that ∇𝛽𝑔(𝑍; 𝛾, 𝛽) = − ∑𝑡 𝐷𝑡, which is continuously differentiable.
For condition 3, 𝔼[𝑔(𝑍; 𝛾, 𝛽)] = 0 is immediate by assumption, and we have

𝔼[‖𝑔(𝑍; 𝛾, 𝛽)‖2] = 𝔼[(
𝑇

∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�′
𝑖𝑡𝛾 − 𝐷𝑖𝑡𝛽))

2

]

= 𝔼[(
𝑇

∑
𝑡=1

[ ̃𝜀𝑖𝑡 + (𝛽𝑖𝑡 − 𝛽) 𝐷𝑖𝑡] 𝐷𝑖𝑡)
2

] < ∞
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due to Assumption 2.1 giving those objects finite moments and 𝑇 being finite due to Assumption 1.4.
Condition 4 is immediate from finite moments, and condition 5 is immediate from Assumption 1.2.
For condition 6,

1
𝑁

𝑁
∑
𝑖=1

𝑔(𝑍𝑖; ̂𝛾, 𝛽) = 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − �̃�𝑖𝑡 ̂𝛾 − 𝐷𝑖𝑡𝛽)

= 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

[𝛽𝑖𝑡𝐷𝑖𝑡 + ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾) − 𝐷𝑖𝑡𝛽] 𝐷𝑖𝑡

= 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

[ ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾) + (𝛽𝑖𝑡 − 𝛽) 𝐷𝑖𝑡] 𝐷𝑖𝑡 = 𝑜𝑃(1)

due to previous arguments. Finally, the second part of condition 6 is immediate from the WLLN.

Lemma B.2.

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡𝜂𝑖𝑡) =

⎡
⎢
⎢
⎣

1
𝑁−𝑅

∑𝑁
𝑖=1 ∑𝑇

𝑡=1 1 [𝑡 − 𝑡∗(𝑖) = −𝑅] 𝜂−𝑅𝑖𝑡

⋮
1

𝑁𝑅
∑𝑁

𝑖=1 ∑𝑇
𝑡=1 1 [𝑡 − 𝑡∗(𝑖) = 𝑅] 𝜂𝑅𝑖𝑡

⎤
⎥
⎥
⎦

.

Proof of Lemma B.2.

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡 =

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

⎡
⎢⎢
⎣

1 [𝑡 − 𝑡∗(𝑖) = −𝑅]
⋮

1 [𝑡 − 𝑡∗(𝑖) = 𝑅]

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1 [𝑡 − 𝑡∗(𝑖) = −𝑅]
⋮

1 [𝑡 − 𝑡∗(𝑖) = 𝑅]

⎤
⎥⎥
⎦

′

=
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

diag (1 [𝑡 − 𝑡∗(𝑖) = −𝑅] , ⋯ , 1 [𝑡 − 𝑡∗(𝑖) = 𝑅])

= diag (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

1 [𝑡 − 𝑡∗(𝑖) = −𝑅] , ⋯ ,
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

1 [𝑡 − 𝑡∗(𝑖) = 𝑅])

= diag (𝑁𝑅, ⋯ , 𝑁𝑅) .

Similarly,

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡𝜂𝑖𝑡 =

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

diag (1 [𝑡 − 𝑡∗(𝑖) = −𝑅] , ⋯ , 1 [𝑡 − 𝑡∗(𝑖) = 𝑅]) 𝜂𝑖𝑡

=
⎡
⎢⎢
⎣

∑𝑁
𝑖=1 ∑𝑇

𝑡=1 1 [𝑡 − 𝑡∗(𝑖) = −𝑅] 𝜂−𝑅𝑖𝑡

⋮
∑𝑁

𝑖=1 ∑𝑇
𝑡=1 1 [𝑡 − 𝑡∗(𝑖) = −𝑅] 𝜂𝑅𝑖𝑡

⎤
⎥⎥
⎦

.

Proof of Theorem 2. The proof is analogous to that of 2SDD. The first-stage regression then yields:

̂𝛾 = 𝛾 + ( 1
𝑁 ∑

𝑖
�̃�′

𝑄𝑖�̃�𝑄𝑖)
−1

( 1
𝑁 ∑

𝑖
�̃�′

𝑄𝑖 ̃𝜀𝑄𝑖) .
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Due to Assumption 1.3, and the existence of second moments in Assumption 3.2, by the weak
law of large numbers (WLLN), 1

𝑁 ∑𝑖 �̃�′
𝑄𝑖�̃�𝑄𝑖

𝑝
−→ 𝔼[�̃�′

𝑄𝑖�̃�𝑄𝑖]. Similarly, 1
𝑁 ∑𝑖 �̃�′

𝑄𝑖 ̃𝜀𝑄𝑖
𝑝
−→ 0 and

̂𝛾
𝑝
−→ 𝛾. We can express the estimated coefficient ̂𝜂 as:

̂𝜂 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡𝜂𝑖𝑡) + (

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡 ( ̃𝜀𝑖𝑡 + �̃�𝑖𝑡 ( ̂𝛾 − 𝛾))) .

Due to an argument similar to the proof of Theorem 1, (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1
(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝑊𝑖𝑡𝑊 ′

𝑖𝑡𝜂𝑖𝑡)
𝑝
−→

𝜂. Due to Assumption 3.2, ∣(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1
(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝑊𝑖𝑡�̃�𝑖𝑡)∣ is bounded in probability,

so

̂𝜂 = 𝜂 + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡 ( ̃𝜀𝑖𝑡 − �̃�′
𝑖𝑡 ( ̂𝛾 − 𝛾))) + 𝑜𝑃(1)

= 𝜂 + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡 ̃𝜀𝑖𝑡) + 𝑜𝑃(1).

The first equality occurs due to Lemma B.2. Due to Assumption 1.3, 1
𝑁 ∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝑊𝑖𝑡𝑊 ′

𝑖𝑡 →
𝔼[diag (𝑁𝑖,−𝑅, ⋯ , 𝑁𝑖,𝑅)] ≕ Σ𝑊.

Due to Assumption 3.3, Σ𝑊 is invertible and finite. ∑𝑇
𝑡=1 𝑊𝑖𝑡 ̃𝜀𝑖𝑡 are also independent over indi-

viduals. Due to finite moments, we can apply the law of large numbers to obtain 1
𝑁 ∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝑊𝑖𝑡 ̃𝜀𝑖𝑡

𝑝
−→

0. Then, ̂𝜂 = 𝜂 + 𝑜𝑃(1) as required.
If the conditions of Theorem 6.1 of Newey and McFadden (1994) are satisfied, the result

automatically follows. Verifying the conditions is analogous to the proof of Theorem 1.
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C Simulations: Random design vs. fixed design

We discuss how our simulation environment compares to that of Borusyak, Jaravel and Spiess
(2024), who propose a numerically equivalent estimator with a different asymptotic theory. They
propose an asymptotically conservative approach to inference and document that it performs well
in finite samples using a series of Monte Carlo simulations. As our discussion of overfitting in
Section 4.2.2 highlights, we observe substantial rates of over-rejection using their variance estimator,
particularly when treatment timing varies over longer periods.

Furthermore, their simulation environment, and their theory more generally, interprets treatment
assignment and event times as non-stochastic. The design—treated states, treatment effects, and
treatment timing—is therefore held fixed, and the source of randomness across simulations is the
randomly drawn error term for generating outcomes. With the error term in outcomes as the sole
source of randomness, the variance of that error term plays a crucial role.

We explore the conditions under which rejection rates can reach 100% in such a setup. A
simple example with two periods and two states suffices to illustrate the problems that can arise
for a small error term variance. Consider a placebo law, for which the true effect is zero, that
applies to a random sample of treated states. In the absence of any true treatment effect, we would
expect changes in outcomes for both treated and control states to be similar, and any observed
discrepancy between the changes for the two groups would be solely attributed to the random error
term. However, a finite difference in outcomes arises because the assignment of states to treatment
or control groups is fixed after being drawn only once. This finite difference is not fully absorbed by
state and year fixed effects, leading to misspecification. As a result, when the variance of the error
term is sufficiently small compared to that finite difference, we observe consistent rejection of the
null hypothesis. Assuming a larger error variance, using a large sample of treated states, or using
random designs mitigates this issue (and we verify that our conclusions regarding the performance
of the various estimators continue to hold under fixed designs with large error variance). Our
discussion highlights the conceptual appeal of adopting a “random design” approach, in which
stochasticity is incorporated into the simulation by randomly drawing treated states, treatment
effects, and treatment timing in each iteration. Under random designs, even with a small error
variance, rejection rates remain accurate and avoid spurious over-rejection.
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D Empirical applications

D.1 Selection of papers and outcomes

Below is the list of papers included in our empirical analysis, which appear in Table 1 of Sun
and Abraham (2021), and the outcomes they study. We omit outcomes that are unavailable in
the replication data, or are too slow to run (more than 5 days of runtime) for at least one of the
methods.

• Bailey and Goodman-Bacon (2015)

– Age-adjusted mortality rate (Figure 5)

– Infant mortality rate (Figure 7.A)

– Age-adjusted mortality rate: children (1–14) (Figure 7.B)

– Age-adjusted mortality rate: adults (15–49) (Figure 7.C)

– Age-adjusted mortality rate: older adults (50+) (Figure 7.D)

• Deryugina (2017)

– Effect of a hurricane on earnings and transfers (Figure 2)

– Effect of a hurricane on demographics (Figure 3)

– Effect of a hurricane on transfer components (Figures 4 and 5)

• He and Wang (2017)

– Subsidized population (Figure 2.A)

– Poor-quality housing (Figure 2.B)

– Registered poor households (Figure 2.C)

– People with disabilities (Figure 2.D)

• Kuziemko, Meckel and Rossin-Slater (2018)

– Mortality rates of children born to US-born Black mothers (Figure 2.A)

– Mortality rates of children born to US-born Hispanic mothers (Figure 2.B)

• Lafortune, Rothstein and Schanzenbach (2018)

– Mean state revenues in lowest income districts (Figure 3)

– Mean state revenues in highest income districts (Figure 4)

– Progressivity of state revenues (Figure 5)

– Mean total revenues per pupil (Figure A3(a))
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– Mean total revenues per pupil in the lowest income quintile of districts (Figure A3(b))

– Mean total revenues per pupil in the highest income quintile of districts (Figure A3(c))

– Difference in mean total revenues per pupil between top and bottom quintile districts
(Figure A3(d))

• Tewari (2014)

– Home ownership (Figure 1)

• Ujhelyi (2014)

– Share of intergovernmental expenditures in total expenditures (Figure 1)

D.2 Replication of Kuziemko, Meckel and Rossin-Slater (2018)

The Kuziemko, Meckel and Rossin-Slater (2018) paper studies the effect of the transition from
Medicaid’s public fee-for-service (FFS) plan to private Medicaid Managed Care (MMC) plans on
infant mortality rates for US-born Black and Hispanic mothers in Texas. Their analysis uses 250
counties in Texas, with 9 years of data from 1993 to 2001. Of the 250 counties, 3 are treated in
1995, 36 are treated in 1996, 1 is treated in 1997, 8 are treated in 1998, and 9 are treated in 1999.

The dataset contains the month and year in which each treated county switched from FFS to
MMC. However, the authors estimate the effect of the transition on infant mortality rates using a
two-way fixed effects specification with year-since-treatment event dummies, where years are defined
as 12-month periods relative to the event time. We attempt to replicate the analysis of Kuziemko,
Meckel and Rossin-Slater (2018) using this kind of specification with the heterogeneity-robust
estimators.

The 2SDD approach is easily implemented by using month fixed effects in the first stage and
year-since-treatment event dummies in the second stage. To obtain estimates using csdid (Rios-
Avila, Sant’Anna and Callaway, 2023), eventstudyinteract (Sun, 2021), did_multiplegt_dyn
(de Chaisemartin et al., 2023), and jwdid (Rios-Avila, Nagengast and Yotov, 2022), we must define
the cohort as the treatment year (not the exact month) to obtain dynamic effects by year since
treatment. We present these results in Appendix Figure 2. However, we note that the conceptually
correct way to do this exercise using those estimators would be to estimate separate effects for each
month and then aggregate them into 12-month bins. This process would be somewhat cumbersome,
and if undertaken, would require either assuming the distribution of units in each bin is known,
or using a bootstrap, or devising a potentially complicated analytical asymptotic adjustment to
account for that uncertainty.

This highlights the flexibility and simplicity advantages of 2SDD. With 2SDD, implementing
the conceptually correct approach is straightforward: Simply include month fixed effects in the first
stage and years-since-treatment indicators in the second stage.2

2However, we were unable to obtain estimates using the imputation approach (Borusyak, 2021) when adding
month fixed effects in the first stage.
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E Extension to stacked differences in differences

In the stacked approach, a new dataset is created for each treated group, containing observations on
that group 𝑅 periods before, and ̄𝑃 periods after, the treatment is adopted, as well as on units that
are not yet treated during these periods. These group-specific datasets are stacked, and outcomes
are regressed on treatment status and dataset-specific group and period fixed effects:

𝑌𝑐𝑔𝑝𝑖𝑡 = 𝜆𝑐𝑔 + 𝜆𝑐𝑝 + 𝛽𝐷𝑐𝑔𝑝 + 𝜀𝑐𝑔𝑝𝑖𝑡,

where 𝑐𝑔𝑝𝑖𝑡 indexes the value of an observation in the dataset for group 𝑐 for the 𝑖th member of
group 𝑔 during the 𝑡th time of period 𝑝.

Let 𝐷𝑐𝑔𝑝 be an indicator for whether group 𝑔 is treated during period 𝑝 of the group-𝑐 dataset,
and 𝐷𝑟𝑐𝑔𝑝 be an indicator for whether members of 𝑔 have been treated for 𝑟 ∈ {1, … , ̄𝑃 } periods
as of period 𝑝 in dataset 𝑐. Let 𝜏 = ̄𝑃/( ̄𝑃 + 𝑅 + 1) denote the fraction of periods during which
treated units in any group-specific dataset are treated, 𝜋𝑐 denote the fraction of units in dataset
𝑐 that belong to the treatment group, and 𝜌𝑐 denote size of the group-𝑐 dataset relative to the
stacked dataset.

The weight 𝜔𝑟𝑔 that stacked differences in differences places on the 𝑟-period average treatment
effect 𝛽𝑟𝑔 for group 𝑔 is given by the slope coefficient from a population regression of 𝐷𝑟𝑐𝑔𝑝 on
the residual �̃�𝑐𝑔𝑝 from a regression of 𝐷𝑐𝑔𝑝 on dataset×period and dataset×group effects. This
residual is

�̃�𝑐𝑔𝑝 = 𝐷𝑐𝑔𝑝 − 𝑃(𝐷𝑐𝑔𝑝 = 1|𝑔, 𝑐) − [𝑃 (𝐷𝑐𝑔𝑝 = 1|𝑝, 𝑐) − 𝑃(𝐷𝑐𝑔𝑝 = 1|𝑐)],

where statements conditional on 𝑐 are true in the population corresponding to dataset 𝑐. Using
this expression and adapting (3) to the stacked setting,

𝜔𝑟𝑔 =
[1 − 𝜏 − (𝜋𝑐 − 𝜏𝜋𝑐)]𝑃 (𝐷𝑟𝑐𝑔𝑝 = 1)

∑𝐺
𝑐=1 ∑�̄�

𝑝=1[1 − 𝜏 − (𝜋𝑐 − 𝜏𝜋𝑐)]𝑃 (𝐷𝑟𝑐𝑔𝑝 = 1)

=
(1 − 𝜏)(1 − 𝜋𝑐)𝜏𝜋𝑐𝜌𝑐

∑𝐺
𝑐=1 ∑�̄�

𝑝=1(1 − 𝜏)(1 − 𝜋𝑐)𝜏𝜋𝑐𝜌𝑐

=
(1 − 𝜋𝑐)𝜋𝑐𝜌𝑐

̄𝑃 ∑𝐺
𝑐=1(1 − 𝜋𝑐)𝜋𝑐𝜌𝑐

.
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Appendix Figure 1: Event-study in non-staggered setting with pre-trend

Note: This figure displays event-study estimates for a simulated dataset exhibiting a pre-trend from Roth (2024) by
applying 2SDD with the first stage estimated using observations for eventually-treated units in the period immediately
before they adopt the treatment as well as all observations for never-treated units. Under this data-generating
process, the outcome for treated units follows a linear trend: 𝑌𝑖𝑡 = 0.5 ⋅ 𝑡 ⋅ 𝐷𝑖 + 𝜀𝑖𝑡, where 𝐷𝑖 is an indicator for
treatment and 𝜀𝑖𝑡 are i.i.d. standard normal.
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Appendix Figure 2: Empirical applications: Kuziemko, Meckel and Rossin-Slater (2018) event
study estimates

(a) Figure 2(a)

(b) Figure 2(b)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in
Kuziemko, Meckel and Rossin-Slater (2018).
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Appendix Figure 3: Empirical applications: Bailey and Goodman-Bacon (2015) event study
estimates

(a) Figure 5

(b) Figure 7(a) (c) Figure 7(b)

(d) Figure 7(c) (e) Figure 7(d)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in
Bailey and Goodman-Bacon (2015).
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Appendix Figure 4: Empirical applications: Deryugina (2017) event study estimates (part 1)

(a) Figure 2(a) (b) Figure 2(b)

(c) Figure 2(c) (d) Figure 2(d)

(e) Figure 3(b) (f) Figure 3(c) (g) Figure 3(d)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in
Deryugina (2017); see Appendix Figure 5 for the remaining estimates.
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Appendix Figure 5: Empirical applications: Deryugina (2017) event study estimates (part 2)

(a) Figure 4(a) (b) Figure 4(b)

(c) Figure 4(c) (d) Figure 4(d) (e) Figure 5(a)

(f) Figure 5(b) (g) Figure 5(c) (h) Figure 5(d)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in
Deryugina (2017); see Appendix Figure 4 for the remaining estimates.
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Appendix Figure 6: Empirical applications: He and Wang (2017) event study estimates

(a) Figure 2(a) (b) Figure 2(b)

(c) Figure 2(c) (d) Figure 2(d)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in He
and Wang (2017).
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Appendix Figure 7: Empirical applications: Lafortune, Rothstein and Schanzenbach (2018) event
study estimates

(a) Figure 3 (b) Figure 4 (c) Figure 5

(d) Figure A.3(a) (e) Figure A.3(b)

(f) Figure A.3(c) (g) Figure A.3(d)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications in
Lafortune, Rothstein and Schanzenbach (2018).
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Appendix Figure 8: Empirical applications: Outlier pre-treatment normalized standard error
differences

Note: Among the five estimators we investigate, each panel of this figure corresponds to an estimator for which
a standard error estimate (associated with a particular pre-treatment period before −1, outcome variable, and
empirical setting) significantly deviates from the average of the other methods’ standard errors. Each entry displays
the difference between each method’s standard error and its associated leave-out mean, normalized by the average
of the absolute value of the standard errors for that coefficient. The criterion for determining that an estimator’s
standard error significantly deviates from that of the other estimators is that the normalized difference falls in the
top 2.5 percent or bottom 2.5 percent of the distribution (vertical bars closer to zero as thresholds), excluding
estimates from the Bailey and Goodman-Bacon (2015) paper. The numbers in the bottom left of each panel indicate
the number of such outlier estimates at the 5 percent level and 1 percent level, respectively.
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Appendix Table 1: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 20 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.99 0.1036 0.0018 0.1046 0.08
1 5.39 0.1041 -0.0026 0.1019
2 4.99 0.1041 -0.0021 0.1046
3 4.99 0.1060 0.0003 0.1013
4 5.39 0.1057 -0.0027 0.1072

BJS 0 15.97 0.0756 -0.0036 0.1004 0.25
1 16.17 0.0767 0.0067 0.1066
2 13.97 0.0767 0.0005 0.0996
3 16.97 0.0768 0.0092 0.1065
4 16.37 0.0774 0.0029 0.1082

CS 0 6.19 0.1451 0.0012 0.1470 27.36
1 4.19 0.1464 -0.0036 0.1425
2 5.19 0.1460 0.0023 0.1451
3 5.79 0.1459 0.0041 0.1478
4 4.79 0.1461 0.0021 0.1427

SA 0 1.40 0.1707 0.0125 0.1362 48.63
1 1.40 0.1716 0.0090 0.1336
2 1.40 0.1708 0.0064 0.1348
3 1.40 0.1726 0.0120 0.1349
4 2.79 0.1726 0.0073 0.1437

dCDH 0 6.79 0.1279 0.0141 0.1347 3.70
1 8.18 0.1272 0.0098 0.1324
2 7.98 0.1280 0.0104 0.1373
3 5.99 0.1287 0.0127 0.1356
4 7.78 0.1294 0.0103 0.1415

W 0 4.99 0.1404 0.0135 0.1373 87.79
1 4.99 0.1403 0.0101 0.1340
2 4.99 0.1404 0.0074 0.1357
3 5.19 0.1415 0.0129 0.1360
4 5.79 0.1420 0.0084 0.1428

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 2: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 15 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.79 0.1047 0.0006 0.1074 0.10
1 6.79 0.1050 0.0013 0.1064
2 6.19 0.1063 0.0026 0.1094
3 5.19 0.1057 -0.0002 0.1024
4 4.39 0.1075 0.0014 0.1047

BJS 0 11.58 0.0862 -0.0028 0.1038 0.20
1 10.18 0.0862 0.0018 0.1031
2 10.38 0.0864 0.0014 0.1057
3 12.38 0.0869 0.0046 0.1049
4 12.38 0.0881 -0.0018 0.1125

CS 0 5.59 0.1499 -0.0105 0.1490 18.84
1 4.19 0.1495 -0.0118 0.1404
2 5.99 0.1506 -0.0034 0.1495
3 4.79 0.1505 -0.0090 0.1436
4 4.99 0.1515 -0.0044 0.1532

SA 0 3.19 0.1706 0.0049 0.1565 23.44
1 3.59 0.1696 0.0042 0.1530
2 2.40 0.1705 0.0070 0.1502
3 2.20 0.1697 0.0051 0.1491
4 2.20 0.1716 0.0040 0.1519

dCDH 0 7.98 0.1369 0.0062 0.1536 3.58
1 7.19 0.1356 0.0067 0.1485
2 8.58 0.1372 0.0081 0.1489
3 7.98 0.1368 0.0055 0.1452
4 7.98 0.1390 0.0071 0.1492

W 0 7.39 0.1479 0.0049 0.1575 55.06
1 6.59 0.1467 0.0043 0.1539
2 5.99 0.1471 0.0072 0.1519
3 5.19 0.1468 0.0052 0.1495
4 5.19 0.1490 0.0043 0.1526

Note: The table reports results from 501 simulations of 40 treated states over 15 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 3: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 10 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 6.19 0.1076 -0.0016 0.1102 0.10
1 5.19 0.1085 0.0065 0.1077
2 4.59 0.1102 0.0008 0.1082
3 5.19 0.1110 -0.0069 0.1090
4 5.39 0.1102 0.0076 0.1088

BJS 0 8.38 0.0952 0.0042 0.1079 0.28
1 10.18 0.0953 -0.0027 0.1124
2 7.58 0.0976 0.0027 0.1064
3 8.38 0.0989 -0.0010 0.1140
4 9.18 0.0978 0.0045 0.1131

CS 0 4.59 0.1569 -0.0043 0.1528 10.94
1 4.19 0.1578 0.0056 0.1548
2 4.79 0.1571 0.0005 0.1494
3 4.39 0.1587 -0.0045 0.1548
4 5.59 0.1573 0.0067 0.1554

SA 0 4.19 0.1719 -0.0066 0.1625 11.27
1 2.20 0.1715 -0.0001 0.1544
2 2.99 0.1726 -0.0044 0.1561
3 3.39 0.1738 -0.0102 0.1530
4 2.00 0.1724 0.0054 0.1545

dCDH 0 6.99 0.1441 -0.0063 0.1542 3.50
1 6.79 0.1459 0.0018 0.1481
2 5.39 0.1466 -0.0043 0.1517
3 4.99 0.1475 -0.0126 0.1466
4 5.79 0.1464 0.0018 0.1500

W 0 6.99 0.1571 -0.0068 0.1655 28.39
1 5.19 0.1577 -0.0005 0.1553
2 6.19 0.1578 -0.0046 0.1583
3 5.79 0.1589 -0.0103 0.1559
4 5.79 0.1573 0.0055 0.1577

Note: The table reports results from 501 simulations of 40 treated states over 10 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 4: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 5 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.39 0.1156 0.0054 0.1146 0.11
1 6.99 0.1173 -0.0035 0.1255
2 6.39 0.1180 0.0062 0.1217
3 6.99 0.1185 0.0116 0.1212
4 6.59 0.1191 0.0087 0.1246

BJS 0 7.39 0.1106 0.0023 0.1226 0.26
1 5.39 0.1116 0.0033 0.1186
2 9.18 0.1134 0.0066 0.1246
3 6.79 0.1131 0.0031 0.1192
4 9.58 0.1145 0.0058 0.1292

CS 0 5.79 0.1757 0.0005 0.1838 5.19
1 4.79 0.1765 0.0051 0.1837
2 4.39 0.1757 0.0045 0.1717
3 6.39 0.1764 -0.0052 0.1896
4 7.39 0.1760 -0.0002 0.1902

SA 0 2.99 0.1828 0.0021 0.1655 2.24
1 3.79 0.1829 -0.0091 0.1764
2 4.19 0.1829 0.0039 0.1734
3 5.39 0.1819 0.0080 0.1764
4 2.99 0.1840 0.0036 0.1642

dCDH 0 4.39 0.1591 0.0012 0.1549 3.33
1 5.79 0.1604 -0.0075 0.1597
2 5.59 0.1603 0.0027 0.1627
3 5.59 0.1623 0.0080 0.1645
4 5.79 0.1630 0.0051 0.1607

W 0 5.19 0.1792 0.0013 0.1695 10.88
1 5.59 0.1791 -0.0098 0.1794
2 4.59 0.1791 0.0033 0.1765
3 6.99 0.1784 0.0074 0.1846
4 3.79 0.1801 0.0027 0.1682

Note: The table reports results from 501 simulations of 40 treated states over 5 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 5: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 2 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 8.38 0.1465 -0.0052 0.1608 0.10
1 6.39 0.1492 -0.0001 0.1501
2 7.19 0.1497 -0.0019 0.1499
3 5.99 0.1491 -0.0071 0.1463
4 6.39 0.1512 0.0156 0.1562

BJS 0 5.59 0.1451 0.0083 0.1454 0.22
1 6.59 0.1450 -0.0063 0.1532
2 5.79 0.1478 -0.0121 0.1605
3 8.18 0.1472 -0.0083 0.1576
4 5.99 0.1509 0.0034 0.1582

CS 0 7.78 0.2226 0.0033 0.2320 2.61
1 6.99 0.2226 -0.0059 0.2338
2 8.58 0.2239 0.0036 0.2364
3 7.58 0.2203 -0.0016 0.2349
4 7.19 0.2223 -0.0091 0.2355

SA 0 8.98 0.2140 -0.0001 0.2354 0.57
1 5.79 0.2175 0.0013 0.2178
2 4.39 0.2173 0.0011 0.2162
3 5.79 0.2142 -0.0039 0.2149
4 5.19 0.2185 0.0179 0.2238

dCDH 0 6.59 0.2012 -0.0026 0.2124 2.88
1 6.19 0.2060 0.0019 0.2081
2 4.79 0.2074 0.0000 0.2035
3 3.79 0.2078 -0.0047 0.2021
4 6.19 0.2096 0.0174 0.2156

W 0 10.78 0.2238 -0.0012 0.2480 4.33
1 5.59 0.2293 0.0008 0.2302
2 5.99 0.2284 0.0002 0.2273
3 5.59 0.2272 -0.0047 0.2245
4 6.39 0.2292 0.0165 0.2365

Note: The table reports results from 501 simulations of 40 treated states over 2 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 6: Simulations (CPS wage data, heterogeneous treatment effects): 30 states treated
over 15 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.99 0.1170 -0.0019 0.1157 0.11
1 4.79 0.1179 -0.0017 0.1148
2 5.99 0.1183 0.0017 0.1209
3 4.39 0.1193 -0.0036 0.1150
4 4.99 0.1182 0.0040 0.1111

BJS 0 15.57 0.0851 0.0002 0.1138 0.21
1 16.97 0.0864 -0.0020 0.1189
2 17.76 0.0863 0.0050 0.1235
3 16.77 0.0872 -0.0040 0.1194
4 18.56 0.0872 0.0000 0.1232

CS 0 5.59 0.1606 0.0043 0.1575 23.31
1 5.99 0.1602 0.0038 0.1665
2 5.79 0.1615 0.0017 0.1596
3 6.79 0.1606 0.0064 0.1589
4 7.58 0.1600 0.0012 0.1644

SA 0 2.99 0.1789 -0.0023 0.1576 20.66
1 2.79 0.1788 -0.0011 0.1516
2 2.20 0.1791 0.0009 0.1586
3 1.80 0.1814 -0.0039 0.1552
4 2.40 0.1793 0.0036 0.1544

dCDH 0 8.98 0.1437 -0.0010 0.1583 3.63
1 7.98 0.1435 -0.0006 0.1536
2 9.98 0.1433 0.0029 0.1608
3 7.39 0.1457 -0.0022 0.1591
4 9.58 0.1439 0.0049 0.1542

W 0 8.58 0.1425 -0.0020 0.1597 54.57
1 8.98 0.1419 -0.0008 0.1545
2 9.18 0.1419 0.0012 0.1609
3 6.79 0.1445 -0.0035 0.1580
4 9.38 0.1428 0.0039 0.1559

Note: The table reports results from 501 simulations of 30 treated states over 15 years, with at least one treated state
in each of those years. See the note accompanying Table 2 for further information.
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Appendix Table 7: Simulations (CPS wage data, homogeneous treatment effects): 40 states treated
over 20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.99 0.1025 0.0059 0.0997 0.11
1 5.79 0.1026 0.0064 0.1046
2 4.99 0.1038 -0.0075 0.1020
3 4.99 0.1039 0.0041 0.1027
4 6.39 0.1045 0.0039 0.1047

BJS 0 12.57 0.0741 -0.0016 0.0967 0.22
1 16.97 0.0748 -0.0034 0.1034
2 16.17 0.0758 -0.0019 0.1073
3 12.57 0.0757 -0.0006 0.1000
4 15.77 0.0771 -0.0125 0.1045

BJS (leave out) 0 0.40 0.1401 -0.0016 0.0967 0.59
1 1.20 0.1402 -0.0034 0.1034
2 1.80 0.1419 -0.0019 0.1073
3 1.00 0.1407 -0.0006 0.1000
4 0.80 0.1428 -0.0125 0.1045

CS 0 2.99 0.1434 -0.0002 0.1347 42.21
1 5.59 0.1419 0.0062 0.1378
2 4.39 0.1416 0.0006 0.1305
3 3.59 0.1429 0.0059 0.1343
4 4.79 0.1430 -0.0029 0.1355

SA 0 0.60 0.1663 0.0018 0.1272 38.92
1 2.00 0.1664 0.0015 0.1417
2 2.00 0.1670 -0.0138 0.1371
3 2.00 0.1673 -0.0023 0.1357
4 1.80 0.1678 -0.0011 0.1396

dCDH 0 4.79 0.1375 0.0009 0.1277 5.15
1 6.59 0.1371 0.0017 0.1422
2 4.99 0.1388 -0.0126 0.1370
3 5.79 0.1377 -0.0010 0.1373
4 5.19 0.1386 -0.0010 0.1400

W 0 4.59 0.1341 0.0015 0.1284 96.38
1 6.59 0.1341 0.0011 0.1434
2 6.39 0.1357 -0.0141 0.1382
3 5.79 0.1344 -0.0027 0.1363
4 5.99 0.1355 -0.0015 0.1400

TWFE 0 2.79 0.1367 0.0005 0.1230 0.16
1 3.79 0.1365 0.0010 0.1378
2 4.39 0.1360 -0.0136 0.1327
3 4.99 0.1369 -0.0014 0.1342
4 4.59 0.1372 -0.0015 0.1365

TWFE (no pre) 0 5.39 0.1011 0.0053 0.0969 0.11
1 5.59 0.1009 0.0059 0.1036
2 4.39 0.1020 -0.0087 0.1002
3 4.99 0.1022 0.0036 0.1012
4 5.19 0.1028 0.0035 0.1042

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated states in each
of those years. Treatment effects are homogeneous and drawn from a normal distribution, with an average value set to
5 percent of the average wage and a standard deviation equal to 10 percent of the average wage. TWFE denotes the
two-way fixed effects estimator for a fully dynamic specification, estimating both pre-event and post-event coefficients.
TWFE (no pre) denotes a two-way fixed effects specification that estimates only post-event coefficients. See the note
accompanying Table 2 for further information.
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Appendix Table 8: Simulations (i.i.d. data, homogeneous treatment effects): 40 states treated over
20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.39 0.1285 0.0005 0.1265 0.12
1 4.99 0.1295 0.0075 0.1304
2 4.59 0.1297 -0.0105 0.1250
3 4.59 0.1303 0.0035 0.1264
4 4.99 0.1304 0.0013 0.1270

BJS 0 17.56 0.0936 0.0002 0.1306 0.24
1 14.77 0.0938 -0.0019 0.1229
2 16.37 0.0942 0.0024 0.1334
3 14.37 0.0942 -0.0037 0.1263
4 15.97 0.0969 0.0020 0.1306

BJS (leave out) 0 1.60 0.1771 0.0002 0.1306 0.25
1 0.60 0.1761 -0.0019 0.1229
2 1.60 0.1762 0.0024 0.1334
3 1.80 0.1754 -0.0037 0.1263
4 0.20 0.1796 0.0020 0.1306

CS 0 3.99 0.1794 -0.0103 0.1709 32.61
1 4.39 0.1798 -0.0011 0.1770
2 4.99 0.1783 0.0017 0.1673
3 5.19 0.1788 0.0047 0.1698
4 2.99 0.1798 -0.0036 0.1670

SA 0 2.00 0.2084 -0.0040 0.1681 51.48
1 2.00 0.2099 0.0015 0.1803
2 1.60 0.2096 -0.0169 0.1739
3 1.20 0.2087 -0.0032 0.1685
4 1.80 0.2089 -0.0033 0.1762

dCDH 0 5.39 0.1718 -0.0054 0.1678 3.64
1 6.19 0.1729 0.0022 0.1819
2 5.79 0.1730 -0.0163 0.1747
3 5.39 0.1722 -0.0024 0.1693
4 5.79 0.1726 -0.0045 0.1774

W 0 5.99 0.1680 -0.0047 0.1693 87.35
1 7.19 0.1691 0.0009 0.1819
2 5.39 0.1694 -0.0175 0.1760
3 6.19 0.1683 -0.0039 0.1701
4 6.39 0.1691 -0.0041 0.1773

TWFE 0 4.99 0.1707 -0.0064 0.1622 0.16
1 4.59 0.1719 0.0008 0.1774
2 5.39 0.1705 -0.0178 0.1699
3 3.79 0.1708 -0.0028 0.1647
4 4.19 0.1709 -0.0048 0.1717

TWFE (no pre) 0 4.99 0.1267 -0.0004 0.1230 0.11
1 4.39 0.1273 0.0069 0.1297
2 4.39 0.1273 -0.0117 0.1227
3 3.59 0.1281 0.0034 0.1239
4 5.39 0.1281 0.0013 0.1264

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated states in
each of those years. Treatment effects are homogeneous and drawn from a normal distribution, with an average value
set to 5 percent of the average wage and a standard deviation equal to 10 percent of the average wage. See the note
accompanying Appendix Table 7 for further information.
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Appendix Table 9: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated over
30 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.39 0.1267 0.0035 0.1285 0.07
1 6.79 0.1277 -0.0051 0.1317
2 5.79 0.1275 -0.0009 0.1267
3 4.79 0.1279 -0.0022 0.1298
4 6.19 0.1298 0.0103 0.1359

BJS 0 27.54 0.0679 -0.0025 0.1211 0.21
1 31.74 0.0694 -0.0016 0.1291
2 31.54 0.0692 -0.0052 0.1323
3 28.94 0.0703 -0.0012 0.1276
4 30.54 0.0702 0.0030 0.1328

CS 0 3.79 0.1754 0.0006 0.1609 57.13
1 6.19 0.1756 0.0080 0.1814
2 5.39 0.1764 -0.0002 0.1733
3 4.19 0.1753 -0.0044 0.1625
4 4.39 0.1767 0.0068 0.1747

SA 0 2.00 0.2069 0.0060 0.1679 141.91
1 2.00 0.2095 -0.0052 0.1789
2 1.80 0.2084 0.0010 0.1686
3 2.59 0.2087 -0.0019 0.1708
4 1.00 0.2120 0.0118 0.1697

dCDH 0 20.56 0.1156 0.0043 0.1704 4.69
1 21.16 0.1174 -0.0042 0.1808
2 17.96 0.1174 0.0001 0.1682
3 20.16 0.1180 -0.0009 0.1714
4 18.36 0.1197 0.0118 0.1708

W 0 10.98 0.1447 0.0065 0.1685 200.93
1 13.17 0.1471 -0.0047 0.1791
2 10.38 0.1469 0.0015 0.1691
3 10.58 0.1486 -0.0014 0.1713
4 12.57 0.1504 0.0122 0.1709

Note: The table reports results from 501 simulations of 40 treated states over 30 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.
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Appendix Table 10: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated
over 10 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.39 0.1350 0.0045 0.1385 0.07
1 5.39 0.1366 0.0138 0.1344
2 4.79 0.1377 0.0026 0.1351
3 4.39 0.1371 0.0007 0.1330
4 4.99 0.1381 0.0098 0.1348

BJS 0 8.78 0.1189 0.0088 0.1346 0.20
1 10.78 0.1203 -0.0061 0.1402
2 10.78 0.1212 0.0051 0.1417
3 8.18 0.1225 0.0013 0.1379
4 8.78 0.1222 -0.0017 0.1382

CS 0 5.59 0.1968 -0.0087 0.1992 13.50
1 5.99 0.1984 0.0084 0.2008
2 4.99 0.1983 0.0050 0.1969
3 5.59 0.1970 -0.0048 0.1982
4 6.19 0.1967 0.0046 0.1928

SA 0 4.59 0.2159 -0.0021 0.2047 8.19
1 2.20 0.2182 0.0081 0.1892
2 2.40 0.2178 -0.0041 0.1963
3 2.79 0.2162 -0.0038 0.1861
4 2.79 0.2161 0.0066 0.1901

dCDH 0 7.78 0.1815 -0.0006 0.1916 4.35
1 5.19 0.1856 0.0090 0.1822
2 7.98 0.1850 -0.0019 0.1887
3 5.99 0.1844 -0.0046 0.1828
4 5.19 0.1855 0.0038 0.1809

W 0 6.39 0.1972 -0.0026 0.2073 32.78
1 4.19 0.2003 0.0073 0.1905
2 5.79 0.1986 -0.0046 0.1985
3 4.99 0.1979 -0.0042 0.1888
4 5.59 0.1978 0.0066 0.1930

Note: The table reports results from 501 simulations of 40 treated states over 10 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.
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Appendix Table 11: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated
over 5 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.19 0.1456 0.0048 0.1454 0.07
1 6.79 0.1480 -0.0008 0.1540
2 5.39 0.1478 0.0080 0.1484
3 5.99 0.1481 0.0108 0.1493
4 6.59 0.1496 0.0148 0.1554

BJS 0 6.59 0.1385 -0.0059 0.1456 0.20
1 5.79 0.1399 -0.0151 0.1462
2 8.98 0.1409 -0.0066 0.1541
3 6.19 0.1427 -0.0064 0.1530
4 6.39 0.1445 0.0112 0.1488

CS 0 6.19 0.2198 0.0006 0.2247 6.42
1 6.99 0.2231 0.0030 0.2357
2 6.39 0.2206 0.0088 0.2205
3 7.58 0.2204 0.0002 0.2326
4 7.39 0.2218 0.0024 0.2350

SA 0 3.39 0.2297 -0.0007 0.2111 2.12
1 4.39 0.2306 -0.0059 0.2273
2 3.39 0.2292 0.0019 0.2073
3 3.59 0.2267 0.0069 0.2079
4 3.59 0.2308 0.0093 0.2091

dCDH 0 5.19 0.1997 0.0003 0.1937 3.32
1 4.99 0.2033 -0.0058 0.2016
2 4.39 0.2009 0.0037 0.1927
3 4.19 0.2024 0.0068 0.1941
4 4.99 0.2041 0.0119 0.2007

W 0 5.79 0.2243 -0.0005 0.2169 13.57
1 5.79 0.2257 -0.0061 0.2307
2 5.39 0.2239 0.0017 0.2113
3 4.19 0.2226 0.0067 0.2155
4 4.59 0.2258 0.0093 0.2137

Note: The table reports results from 501 simulations of 40 treated states over 5 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.
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Appendix Table 12: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated
over 2 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 6.59 0.1840 -0.0062 0.1928 0.09
1 6.79 0.1868 -0.0009 0.1938
2 5.59 0.1861 0.0035 0.1946
3 5.59 0.1855 -0.0024 0.1905
4 6.19 0.1898 0.0057 0.1874

BJS 0 6.59 0.1815 -0.0014 0.1939 0.22
1 6.79 0.1827 -0.0096 0.1917
2 7.39 0.1831 -0.0055 0.1960
3 6.39 0.1863 -0.0003 0.1902
4 7.39 0.1848 0.0186 0.2016

CS 0 6.39 0.2778 0.0126 0.2799 2.63
1 8.18 0.2769 -0.0112 0.2915
2 7.98 0.2801 -0.0080 0.2935
3 7.19 0.2764 -0.0023 0.2897
4 6.79 0.2783 -0.0051 0.2833

SA 0 6.99 0.2671 0.0031 0.2851 0.56
1 5.39 0.2735 0.0084 0.2770
2 3.99 0.2720 0.0096 0.2738
3 6.39 0.2640 0.0116 0.2694
4 6.19 0.2715 0.0177 0.2776

dCDH 0 6.79 0.2532 0.0035 0.2571 2.77
1 6.79 0.2606 0.0079 0.2669
2 7.19 0.2590 0.0130 0.2620
3 4.19 0.2583 0.0080 0.2585
4 6.19 0.2632 0.0159 0.2620

W 0 9.38 0.2796 0.0033 0.2996 3.36
1 7.19 0.2891 0.0088 0.2959
2 5.79 0.2861 0.0101 0.2848
3 4.99 0.2799 0.0123 0.2816
4 5.99 0.2861 0.0173 0.2891

Note: The table reports results from 501 simulations of 40 treated states over 2 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.
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Appendix Table 13: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated
over 15 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.99 0.1312 0.0029 0.1352 0.08
1 6.79 0.1304 0.0067 0.1386
2 4.19 0.1328 0.0057 0.1331
3 6.59 0.1324 -0.0056 0.1328
4 5.79 0.1342 0.0015 0.1339

BJS 0 11.98 0.1061 -0.0006 0.1316 0.21
1 12.57 0.1075 -0.0020 0.1346
2 11.58 0.1076 -0.0048 0.1342
3 11.38 0.1079 -0.0060 0.1346
4 10.58 0.1100 -0.0007 0.1310

CS 0 6.19 0.1881 -0.0085 0.1910 21.69
1 3.19 0.1892 -0.0052 0.1813
2 7.78 0.1900 0.0001 0.1907
3 4.79 0.1878 -0.0095 0.1799
4 5.99 0.1902 -0.0083 0.1896

SA 0 2.20 0.2140 0.0086 0.1912 25.85
1 3.39 0.2138 0.0106 0.1959
2 2.79 0.2145 0.0130 0.1899
3 2.99 0.2120 0.0032 0.1929
4 3.19 0.2150 0.0083 0.1923

dCDH 0 8.18 0.1715 0.0114 0.1846 3.51
1 7.98 0.1721 0.0149 0.1871
2 6.99 0.1725 0.0139 0.1846
3 8.78 0.1710 0.0029 0.1894
4 7.39 0.1744 0.0104 0.1848

W 0 6.59 0.1856 0.0096 0.1926 63.27
1 7.58 0.1858 0.0116 0.1978
2 6.39 0.1854 0.0141 0.1906
3 6.99 0.1836 0.0041 0.1944
4 5.79 0.1870 0.0093 0.1937

Note: The table reports results from 501 simulations of 40 treated states over 15 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.

36



Appendix Table 14: Simulations (i.i.d. data, heterogeneous treatment effects): 30 states treated
over 15 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 6.39 0.1461 -0.0064 0.1518 0.07
1 5.79 0.1488 0.0024 0.1494
2 5.59 0.1470 -0.0020 0.1476
3 4.59 0.1477 -0.0027 0.1432
4 5.19 0.1466 0.0104 0.1391

BJS 0 14.17 0.1059 0.0055 0.1418 0.18
1 15.37 0.1082 -0.0007 0.1491
2 17.37 0.1069 -0.0048 0.1524
3 18.96 0.1072 0.0039 0.1607
4 15.37 0.1075 0.0096 0.1471

CS 0 6.19 0.1999 -0.0005 0.2007 21.96
1 8.18 0.2019 -0.0015 0.2221
2 4.99 0.2012 0.0031 0.2023
3 5.79 0.1995 0.0128 0.2046
4 7.19 0.1983 -0.0071 0.2115

SA 0 3.59 0.2232 -0.0005 0.2059 20.59
1 2.40 0.2262 0.0083 0.1997
2 4.59 0.2240 0.0018 0.2039
3 2.79 0.2245 0.0026 0.1954
4 2.79 0.2234 0.0146 0.1904

dCDH 0 10.58 0.1810 0.0011 0.2072 3.59
1 8.98 0.1822 0.0100 0.2019
2 9.98 0.1799 0.0057 0.2033
3 8.18 0.1811 0.0052 0.1979
4 7.58 0.1800 0.0178 0.1925

W 0 10.58 0.1788 0.0003 0.2083 63.24
1 9.18 0.1800 0.0091 0.2025
2 10.58 0.1779 0.0026 0.2053
3 8.58 0.1795 0.0035 0.1977
4 8.58 0.1780 0.0153 0.1932

Note: The table reports results from 501 simulations of 30 treated states over 15 years, with at least one treated state
in each of those years. See the note accompanying Table 4 for further information.
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Appendix Table 15: Empirical applications: Comparison of 𝑡-statistics (always-significant effects)

|𝑡| 𝟙{|𝑡|>4} 𝟙{|𝑡|>8}

Panel A: Unweighted
BJS 1.5334 0.3793 0.1379

(0.2769) (0.0866) (0.0457)
CS -0.1498 -0.0690 0.0000

(0.1832) (0.0818) (0.0000)
SA 0.5620 0.1724 0.0172

(0.2163) (0.0894) (0.0172)
dCDH 1.0068 0.3103 0.0690

(0.2346) (0.0885) (0.0336)

Panel B: Weighted (outcomes)
BJS 1.6800 0.4359 0.1568

(0.3428) (0.1076) (0.0558)
CS -0.1863 -0.0207 0.0000

(0.2274) (0.0778) (0.0000)
SA 0.4857 0.1495 0.0101

(0.2821) (0.0953) (0.0103)
dCDH 0.8941 0.2965 0.0384

(0.2772) (0.1063) (0.0199)

Panel C: Weighted (papers)
BJS 1.7600 0.4461 0.1605

(0.2837) (0.0818) (0.0521)
CS -0.0756 -0.0282 0.0000

(0.1837) (0.0811) (0.0000)
SA 0.4884 0.1654 0.0147

(0.2146) (0.0869) (0.0147)
dCDH 0.8940 0.2892 0.0588

(0.2350) (0.0883) (0.0290)
Note: This table describes the relationship between each estimator and the absolute

𝑡-statistics of the dynamic treatment effect estimates for the subsample of coefficients
for which all five methods yield a statistically significant effect. See Table 9 for further
information.
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Appendix Table 16: Empirical applications: Comparison of 𝑡-statistics (all estimates)

|𝑡| 𝟙{|𝑡|>1.96} 𝟙{|𝑡|>4} 𝟙{|𝑡|>8}

Panel A: Unweighted
BJS 0.5045 0.4715 0.0835 0.0747 0.0882 0.0843 0.0204 0.0189

(0.1118) (0.0914) (0.0338) (0.0223) (0.0203) (0.0165) (0.0072) (0.0096)
CS -0.2720 -0.2753 -0.0811 -0.0820 -0.0074 -0.0074 0.0025 0.0025

(0.0846) (0.0777) (0.0311) (0.0213) (0.0143) (0.0133) (0.0025) (0.0067)
SA 0.7074 0.7041 0.0628 0.0619 0.0965 0.0965 0.0198 0.0198

(0.2036) (0.1791) (0.0333) (0.0218) (0.0204) (0.0162) (0.0069) (0.0088)
dCDH 0.5937 0.4312 0.1347 0.0944 0.2351 0.2351 0.1683 0.1683

(0.1109) (0.0906) (0.0355) (0.0236) (0.0248) (0.0207) (0.0186) (0.0175)

Panel B: Weighted (outcomes)
BJS 0.3672 0.2885 0.0710 0.0514 0.0612 0.0529 0.0134 0.0110

(0.1043) (0.0957) (0.0355) (0.0232) (0.0183) (0.0135) (0.0049) (0.0072)
CS -0.2803 -0.2837 -0.0780 -0.0789 -0.0089 -0.0089 0.0028 0.0028

(0.0876) (0.0909) (0.0318) (0.0231) (0.0146) (0.0140) (0.0028) (0.0054)
SA 0.7915 0.7882 0.0798 0.0789 0.0982 0.0982 0.0223 0.0223

(0.2286) (0.2021) (0.0353) (0.0228) (0.0210) (0.0156) (0.0078) (0.0082)
dCDH 0.4872 0.4079 0.1111 0.0926 0.1663 0.1663 0.1018 0.1018

(0.1153) (0.0959) (0.0370) (0.0245) (0.0224) (0.0168) (0.0126) (0.0119)

Panel C: Weighted (papers)
BJS 0.3034 0.0534 0.0847 0.0478 0.0429 0.0233 0.0093 -0.0006

(0.1200) (0.3690) (0.0520) (0.0477) (0.0105) (0.0213) (0.0034) (0.0184)
CS 0.0817 0.0713 0.0189 0.0161 0.0555 0.0555 0.0138 0.0138

(0.1601) (0.3473) (0.0537) (0.0515) (0.0338) (0.0340) (0.0137) (0.0152)
SA 2.6647 2.6543 0.1360 0.1332 0.1538 0.1538 0.0974 0.0974

(0.9733) (0.9094) (0.0532) (0.0496) (0.0355) (0.0343) (0.0341) (0.0314)
dCDH 0.1893 0.1144 0.0313 0.0206 0.1040 0.1040 0.0792 0.0792

(0.1188) (0.3357) (0.0424) (0.0403) (0.0194) (0.0208) (0.0165) (0.0175)

Controls X X X X
Note: This table describes the relationship between each estimator and the absolute 𝑡-statistics of the dynamic
treatment effect estimates for the full set of event-study coefficients, including those which only a subset of
methods can estimate. The estimates in columns 2, 4, 6, and 8 include paper-outcome-period fixed effects. See
Table 9 for further information.
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Appendix Table 17: Empirical applications: Comparison of 𝑡-statistics (pre-treatment periods)

|𝑡| 𝟙{|𝑡|>1.96} 𝟙{|𝑡|>4} 𝟙{|𝑡|>8}

Panel A: Unweighted
BJS 0.5183 0.1429 0.1250 0.0089

(0.1256) (0.0407) (0.0339) (0.0063)
CS -0.4403 -0.1295 -0.0759 0.0000

(0.0813) (0.0300) (0.0214) (0.0000)
SA 0.3031 -0.0268 -0.0179 0.0134

(0.2843) (0.0355) (0.0264) (0.0077)
dCDH -0.0004 -0.0134 -0.0000 0.0000

(0.0950) (0.0361) (0.0276) (0.0000)

Panel B: Weighted (outcomes)
BJS 0.4278 0.1198 0.0972 0.0069

(0.1131) (0.0378) (0.0282) (0.0049)
CS -0.3218 -0.0851 -0.0434 0.0000

(0.0823) (0.0307) (0.0219) (0.0000)
SA 0.6721 -0.0035 0.0035 0.0234

(0.4774) (0.0341) (0.0249) (0.0134)
dCDH -0.0188 -0.0130 0.0000 0.0000

(0.0860) (0.0318) (0.0222) (0.0000)

Panel C: Weighted (papers)
BJS 0.2539 0.0913 0.0563 0.0030

(0.1149) (0.0372) (0.0185) (0.0021)
CS -0.2345 -0.0194 0.0013 0.0000

(0.1087) (0.0328) (0.0208) (0.0000)
SA 5.3443 0.1852 0.1881 0.1500

(2.6215) (0.0803) (0.0805) (0.0751)
dCDH -0.0237 0.0008 0.0000 0.0000

(0.0967) (0.0269) (0.0109) (0.0000)
Note: This table presents results analogous to those in Appendix Table 16, but for the subsample

of event-study coefficients corresponding to pre-treatment periods.
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