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1 Introduction

It is now widely known that difference-in-differences and event-study estimates based on tra-
ditional two-way-fixed-effects regression specifications do not always identify sensible mea-
sures of average treatment effects when the adoption of a treatment is staggered over time
and duration-specific average treatment effects are heterogeneous across treatment cohorts
(see de Chaisemartin and D’Haultfeeuille, 2020; Borusyak, Jaravel and Spiess, 2021; Sun
and Abraham, 2021; Goodman-Bacon, 2022). These observations have spawned a prolifer-
ation of alternative estimators that are robust to the problems facing traditional regression
specifications in the staggered and heterogeneous setting (see, e.g., Borusyak, Jaravel and
Spiess, 2021; Callaway and Sant’Anna, 2021; de Chaisemartin and D’Haultfeeuille, 2020;
Dube, Jorda and Taylor, 2023; Gardner, 2021; Gardner, Thakral, T6, and Yap, 2023; Liu,
Wang and Xu, 2023; Sun and Abraham, 2021; Wooldridge, 2025; Deb, Norton, Wooldridge
and Norton, 2024).

In this paper, I develop a new approach to robust identification of average treatment ef-
fects using difference-in-difference designs in this setting, motivated by analogy to matching
and regression methods for identifying causal effects under selection on observables. A key
advantage of this new approach is that it only requires the estimation of a single regression,
which automatically produces estimates of the overall average effect of the treatment on the
treated, along with approximately valid asymptotic standard errors. Moreover, this approach
does not really add to the growing list of robust estimators. Instead, point estimates obtained
using this approach are identical to those from the two-stage difference-in-differences estima-
tor developed in Gardner (2021) and discussed in greater detail in Gardner, Thakral, T6, and
Yap (2023), which is also the same as the imputation estimator developed in Borusyak, Jar-
avel and Spiess (2021) and the fixed-effects counterfactual estimator developed in Liu, Wang
and Xu (2023). As a consequence, the one-stage estimator developed in this paper automat-
ically inherits the advantages of these estimators, including robustness to treatment effect

heterogeneity under staggered adoption, efficiency (under the Gauss-Markdov conditions, see



Borusyak, Jaravel and Spiess, 2021), the ability to control for time-varying covariates (that
evolve exogeneously, see Caetano, Callaway, Payne and Rodrigues, 2022), and arbitrary de-
pendence of treatment effects on those covariates. The one-stage approach that I develop here
is also related, and complementary, to the estimators developed in Wooldridge (2025) and
Deb et al. (2024), which can also recover the two-stage estimate from a regression specifica-
tion.! Relative to those papers, this paper provides an alternative way of obtaining two-stage
estimates from a single regression. While, in the specifications in those papers, summary
measures of the effect of the treatment are identified as aggregates of groupxtime-specific
ATTs, in the specifications developed below they are identified directly as the coefficients on
treatment-status variables. Thus, this paper brings some of the simplicity of differences in
differences regression in the 2x2 case to settings with staggered adoption.

This one-stage approach to estimation developed in this paper is flexible. In addition
to the overall average effect of the treatment on the treated, variations on the basic one-
stage regression specification can be used to identify other objects of interest, including
dynamic treatment effects and cohort- or time-specific average treatment effects, as well
as to implement robust triple-differences designs and placebo tests of the parallel trends
assumption. Furthermore, since it ultimately amounts to estimating a single regression, it
can be implemented by anyone using any standard statistical software package, without the
assistance of a specialized estimation routine.

The one-stage estimator developed here is a simple extension of the traditional two-way
fixed effects specification, which makes that specification robust to treatment-effect hetero-
geneity under staggered adoption. The one-stage specification consists of the traditional
specification, plus a set of interaction terms between treatment status and the other vari-
ables included in that specification. The inclusion of these additional terms ensures that

the coefficient on treatment status identifies a particular (and particularly sensible) measure

IThe specifications developed in this paper are different from those in Wooldridge (2025) and Deb et al.
(2024), which can also be used to recover point estimates from (variations on) the two-stage estimator. I was
not aware of the equivalence between those estimators and the two-stage approach when writing the initial
versions of this paper.



of the overall average effect of the treatment on the treated. This overall average effect
of the treatment on the treated can also be viewed as what the traditional two-way fixed
effects difference-in-differences regression “tries” to identify when average treatment effects
are heterogeneous and adoption is staggered.?

In Section 2, below, I outline the environment in which the one-stage approach to differ-
ences in differences developed in this paper applies. Because I formally establish the consis-
tency of this estimator by showing its equivalence to the two-stage difference-in-differences
estimator, I also briefly review the properties of the latter estimator in that section. I moti-
vate and develop the one-stage robust difference-in-difference regression estimator in Section
3. There, I also I show that this one-stage estimator is equivalent to two-stage differences
in differences, and introduce several useful variations on the methodology. In Section 5, I
present evidence on the performance of the one-stage estimator using Monte Carlo simula-
tions. In Section 6, I illustrate the use of the estimator, and compare it to the two-stage
estimator, in the context of two applied examples from the literature. I offer some concluding

remarks in Section 7.

2 Setup, and review of the two-stage approach

Suppose that the data consist of observations on outcomes Yy, treatment status Dy, € {0, 1},
and a set of time-varying control variables X;;, for units ¢ = 1,..., N and time periods
t=1,...,T. T assume throughout that the covariates X;; are not affected by the treatment.
Further suppose that the treatment is irreversible and unanticipated.?

Let C; € {2,...,T,00} be the date at which unit ¢ adopts the treatment, and set C; = oo
if 7 is never treated during the sample period (drop any observations that are always treated

during the sample period, since no treatment effects are identified for always-treated units).

2T provide more detail on what the traditional specification can be viewed as attempting to identify in
Appendix B.

3Tt is possible to allow for potential anticipation by redefining D;; to be an indicator for whether unit i
adopts the treatment a certain number of periods after t.



Also define treatment-cohort indicators CY = 1(C; = j) € {0,1} for j € C = {2,...,T, o0}.
Let (Y2, Y}) be the counterfactual untreated and treated outcomes that i would expe-
rience at time ¢, and (3; = Y;l — Y be the time-t causal effect of the treatment for unit s.
I assume for simplicity that the data {Yy, Xy, Ci}, i =1,...,N, t =1,...,T, consist of a
random panel, although all of the results in this paper also apply to repeated-cross-sectional

data.*

Suppose that untreated outcomes follow parallel trends in the sense that
E(Yi?tﬂ - Yig’X7 Cj) = E(Yi?tJrl - Yig|X7 Ck) = Ay + AX},0

for all 7,k € C. Under this parallel trends assumption, and maintaining the no-anticipation

assumption, expected observed outcomes can be expressed as
E(Y;| X, Ci, Dit) = Aoy + % + X140 + Ber(Xit) D,

where 4(Xi) = E(Y; — Y?|Ci, Xi) = E(Bi|Ci, Xit), and observed outcomes can be ex-

pressed as

Yie = Aeti) + Yo + X0 + Bar(Xie) Diy + e (1)

The two-stage difference-in-differences estimator is based on the implication of parallel

trends that
Yie — Aeti) — % — Xipy = Bet(Xit) Dig + iy = BDst + [Bet(Xit) — B]Die + uie = Dyt + €t

where the overall ATT § is defined as the average effect of the treatment on the treated,

with the average taken across all cohorts, covariates, and time periods, which I denote by

4Since all of the estimands discussed in this paper are conditional on D;; = 1, causal effects for members
of the never-treated cohort can be normalized to zero without loss of generality.



B = Eo(ﬂz‘t’Dz‘t = 1) = E° [Bct(Xit”Dit = 1]; in which case EO{[ﬁct(Xit) - B]Dit|Dit} =
Dy E°[B(Xt)| D] — BDy; = 0.° While there are multiple ways of summarizing treatment
effects that vary across cohorts and time periods (see Callaway and Sant’Anna, 2021, for a
good discussion), this notion of the overall ATT is intuitive and, as I discuss in Appendix B,
has the additional advantage of being the analog of what the traditional two-way fixed effects
difference-in-differences specification arguably “tries” (but fails) to identify when adoption is
staggered and treatment effects are heterogeneous.

Thus, if A, 74, and § were known, the overall ATT could be estimated from a regression
of adjusted outcomes Yj; — Aes) — 7 — X'd on treatment status D;;. Although they are not
known, as long as (i) there are untreated observations in every period, and (ii) there are
pre-treatment observations for every eventually-treated unit, A., 7;, and ¢ can be estimated
from a regression of outcomes on cohort fixed effects, time fixed effects, and time-varying
controls using the sample of untreated observations.® The two-stage difference-in-differences
estimate @QSD D of the overall ATT £ is the estimated coefficient on treatment status from a
regression of Y;; — S\C(i) — Y — Xi’tg on D;;, where ;\c, Yt 5 are estimates of those parameters
obtained from a first-stage regression using the sample of untreated observations. When this
procedure is implemented with cohort fixed effects, the consistency of 325PP follows directly

from the consistency of the first-stage estimates of A\, v, and 9. In the interest of generality,

°T use the symbol “E°(-)” to denote expectations over time periods (in addition to other random variables).
This notation implicitly treats S.:(X;) as a single random variable whose distribution varies across covari-
ates, cohorts, and time (as opposed to a sequence of random variables indexed by time), which can motivated
by thinking of a regression of Y on cohort and time indicators as specifying the conditional expectation of out-
comes conditional on time and cohort membership. Note that when some Z;; is considered as a single random
variable whose distribution varies across time, E°(Z;|Dy; = 1) = Y, E°(ZiDy|t)/ >, E°(Dy|t) [this follows
because, suppressing the subscripts, E°(Z|D = 1) = E°(ZD)/E°(D), where E°(ZD) = %, E°(ZD|t)/T,
and similarly for £°(D)], which is also the probability limit of Z! = 2> ZiDie)/ (32, > Dit). Alterna-
tively, we could maintain the convention that the Z;; are separate random variables for each time period and
simply define the estimand of interest to be E[Y",(Y;i — Y2)Dy]/E(Y", Dit). 1 prefer the former approach
since it makes clear the connection between the overall ATT and the ATT in the cross-sectional case and
provides a formal justification for the latter approach, although both lead to the same estimators, and none
of this paper’s formal results rely on the use of the former approach.

6Observed outcomes can also be expressed in terms of unit (rather than cohort) fixed effects as

Yie = Ni + v + X006 + BieDie + wir,

where )\c = E()\ACZ = C) and ﬂit = th(th)



the following result establishes the consistency and asymptotic distribution of the two-stage
estimator when it is implemented using unit, rather than cohort, fixed effects (although the

argument can be easily be adapted to the case of cohort fixed effects).

Proposition 1. Suppose that (i) E [Zt(l — Dit)Xng] is invertible, where X9 denotes the
vector of deviations in unit i’s covariates (including time indicators) from their means across
all periods where i is untreated, (ii) E(w;s| Dy, Xir) = 0 for all s and t, and (iii) E (Y, Dit) #
0. Then, under parallel trends and no anticipation, (2sbD 2, B and \/N(B”DD - B) ~

N (O, AU_IBOAal), where Ay and By are defined in Appendiz A.7

The proof is given in Appendix A.8

3 A robust one-stage regression approach

3.1 Motivation

The motivation for the robust one-stage estimator comes from the literature on matching
and selection on observables. In a cross-sectional setting, if counterfactual outcomes (Yp, Y))
are independent of treatment status D € {0,1} conditional on a set X of covariates, then
the conditional counterfactual mean outcome functions E(Y|X = z), d € {0,1}, can be
estimated from separate regressions of outcomes on covariates for the treated and untreated

samples, or from a pooled regression of outcomes on the covariates and their interaction with

"Parallel trends implies that E(u;|D;, Xs:) = 0. The assumption that u; is strictly exogeneous is
consistent with the idea that the covariates are not affected by the treatment — there is no feedback from the
errors or the treatment to the covariates. The proof of Proposition 1 can be extended to show the consistency
and asymptotic distribution of a version of the estimator that uses cohort, rather than unit, fixed effects,
by absorbing the cohort dummies into the vector X;; and replacing Xit with the (un-demeaned) vector Xj;.
Furthermore, some tedious algebra shows that the estimated variances for the dummy-variable and within-
transformation versions of the estimator are identical, so the asymptotic distribution with cohort fixed effects
can also be obtained from Proposition 1, redefining X 9 to be the deviation from the cohort-specific untreated
mean.

8Butts and Gardner (2022) and Gardner, Thakral, To, and Yap (2023) derive the asymptotic distribution
of the estimator (for the dummy-variable and within-transformation cases, respectively) by treating the first-
and second-stages as a joint GMM estimator.



treatment status:

Y:X/60+D'X/01+q7 (2)

where E(q|X, D) = 0. If the counterfactual mean outcome functions are indeed linear in the
covariates, they are identified by these regressions, and the ATT can be estimated as the

sample analog of

ATT = E[E(1|X = 2) — E(Yy|X = 2)|D = 1] = E(X|D = 1)'6,.

The second, aggregation, step of this procedure can be avoided by replacing the regression

specification (2) with

Y =X'po+ DX — E(X|D=1)]p1 + 8D+ (3)

In this case, the ATT can be estimated as the sample analog of

ATT = B+ E[X — E(X|D =1)|D =1)p, = 8,

after replacing F(X|D = 1) with its sample analog X' = >". D;X;/(>". D;).® This modified
approach has at least two practical advantages. First, it may be easier to obtain the treated
means X! than to aggregate the covariate-specific ATTs. Second, regression estimates of
specification (3) will automatically produce asymptotic standard errors for the ATT, which
can be used for hypothesis testing and other statistical inference (as Wooldridge, 2010, notes,
the standard errors should technically account for the estimation of X', although this unlikely
to make much of a difference).

The traditional difference-in-differences estimator regresses outcomes on treatment-cohort
(or unit) and time indicators (abstracting away from any other potential control variables),

in addition to time-varying treatment status. The nexus between the regression-adjustment

9To the best of my knowledge, this observation is due to Wooldridge (2010, Ch. 21).



matching approach described above and difference-in-differences estimation comes from pre-
tending that these indicators are true covariates (i.e., that they are quasiexperimentally
manipulable). If this were the case, the overall average effect of the treatment could be
identified by matching observations for treated and untreated units belonging to the same
cohort and recorded in the same period.

Extending the regression-adjustment approach to differences in differences presents two
challenges. The first is that treated units can never be matched to untreated versions of
themselves in the same period. All difference-in-differences methodologies circumvent the
impossibility of this thought experiment under a parallel trends assumption, which allows the
evolution of outcomes for untreated units to be used in place of the counterfactual evolution
of untreated outcomes for treated units. While this kind of extrapolation between units
may be suspect in the general context of selection on observables, in difference-in-differences
designs it is actually desirable.

The second challenge is that, while parallel trends implies that untreated mean out-
comes are linear in cohort/unit and time indicators, in the presence of arbitrary heterogene-
ity, treated outcomes will be nonlinear in those variables if treatment effects vary at the
cohort /unit x time level. If the covariates W, consist of a full set of cohort or unit indicators,
T — 1 relative time indicators, and time-varying controls X;;, parallel trends implies (along

with no anticipation) that untreated outcomes satisfy'®

E(Y|Wit) = Aegiy + 1 + X560 = Wby,

while treated outcomes satisfy

E(Y; [Wy) = ety + v + X330 + B (Xi) = Wibo + Beu(Xir).

Although the latter expression is nonlinear in the covariates, a closer look at the regression-

10Tf W;; includes unit rather than cohort indicators, then the cohort becomes the unit, so that A\, = \;.



adjustment approach reveals that what it really requires is that counterfactual outcomes are
linear on average across the treated population. To see that the logic of this approach carries
over to the case of differences in differences, express S (X;;) in terms of its projection onto

cohort and time indicators (and time-varying controls) as

Bet(Xit) = Be + B+ X}, Bo + (Bet — Be — Bt — X}yBe) = Be + Bi + X}y B + Bt = Wiy + Bu,

where, by definition, E°(56t|Dit = 1) = 0 (with the expectation taken across covariates,
cohorts, and time periods, as in the definition of the overall ATT). Using this decomposition,
we have that

EO[E(YZ% - Y;?‘Wit”Dit = 1] = Eo(ﬂc + 5t + X{tﬁx|Dit = 1) = EO(VVit’Dit = 1)/91-

2

Thus, the overall ATT 3 can be estimated as W6, where W! = OS> DiWi) [ 3257, Dt
is the average of the covariates among treated observations and 0, is the estimated pooled

least-squares regression coefficient vector on D, W;; from the specification
Y;t = VVi/teg -+ DitWiItel -+ Sit-

Moreover, the aggregation step (calculating Wllél) of this procedure is obviated by using

the alternative specification
Yie = Wipo + Dis(Wix — Wh)p1 + BDjy + 1y, (4)

from which S represents the overall ATT. Intuitively, including D;; forces the cohort and time
effects to measure deviations from a reference group x period, while demeaning W;; forces this
to be the overall average among the treated.

In other words, the overall ATT can be estimated as the coefficient on treatment status



from a regression of outcomes on

(i) cohort/unit and and time-period indicators, as well as any time-varying control vari-

ables,

(i) interactions between treatment status and deviations in cohort/unit indicators, time
indicators, and time-varying controls from their means among treated observations,

and
(iii) treatment status.

Note that (ii) above is the only difference between this robust one-stage specification and

the traditional two-way fixed effects specification.

3.2 Properties

When specification (4) includes cohort fixed effects, it is easy to see that the one-stage robust
difference-in-differences regression estimator is consistent for the overall ATT: in this case,
since E(Yy|Wi) = Wipo + Di[Wi — E°(Wy|Dix = 1)]'p1 + 8Dy, and the vector W' of
average cohort indicators, time indicators, and controls among the treated converges to its
population analog E°(Wy|Dy = 1) by a law of large numbers, 55PP is consistent by an
application of the continuous mapping theorem and pooled OLS arguments.!!

More formally, the consistency and asymptotic distribution of the one-stage estimator

can be established by the following result (I also provide an alternative, direct analysis of

the one-stage estimator in Appendix C).

Proposition 2. The one-stage robust difference-in-differences regression estimator is nu-

merically equivalent to the two-stage difference-in-differences estimator: BlSDD = BQSDD.

1 Alternatively, one can appeal to general consistency results for two-stage estimators (see Newey and Mec-
Fadden, 1994; Wooldridge, 2010, chapter 12). Identification for pooled OLS also requires that E (>, Qi:Q%;)
is invertible, where Q;; = [Wys, Dyt (Wiy — W), Dy] is the vector of observations on all covariates for unit i
at time ¢. This requires that the cohort sizes increase with the sample size.

10



Proof. Let ;\2, ceC A, t=1,...,T, and 8% denote the estimated cohort fixed effects,
time fixed effects, and coefficients on time-varying controls from a first-stage regression of
outcomes on those variables, obtained from the sample of untreated observations.!? The
two stage difference-in-differences estimator is the coefficient on D;; from a second-stage
regression of Yit—j\g( N —49—X",6° on Dy, (with no constant term). Since Dy, and D (Wi —W?)
are orthogonal, the term Dy (W;; — Wl) can be added to the second-stage regression without
changing the estimated coefficient on Dy. Now, if A2, X2, and §° were the same as the
estimated cohort effects, time effects, and control coefficients XiSD D A41SPD and §1SPD from
the one-stage regression specification of Y;; on Wi, Dy (Wi — W), and Dy, then the estimated
coefficient 45PP on Dj, from the one-stage specification would be identical to 325PP (this
is an exercise in partitioned regression mechanics; see, for example, Greene, 2018, Ch. 3) .
By the Frisch-Waugh-Lovell theorem, ASPP A\SPD - and §15PD can be obtained from
a regression of Yj; on the residuals from auxiliary regressions of the elements of W; on
D;; and Dy (W — W)L, However, since D;; and D;(W; — W) perfectly predict Wy, for
treated observations (if D; = 1, we can always write the kth element of W; as Wy, =
Diyy(Whis — Wi) + Wi Dy,), these residuals will be zero for all treated observations. Therefore,
;\iSDD7 S\%SDD

glsDD

, and can also be obtained by regressing Y;; on W, in the sample of

untreated observations. That is, AISPP | A\ISPD and §15PD equal A2, A2, and 0°. O

Thus, the one-stage robust regression estimator is identical to the two-stage difference-
in-differences estimator, and the consistency of the former follows formally from that of
the latter. The implication of Proposition 2 is that the one-stage approach is another way
of obtaining two-stage difference-in-differences estimates. The primary advantage of the
one-stage approach is that regression estimates of specification (4) automatically produce
standard error estimates that do not need to be adjusted to account for the first-stage

estimation of the fixed effects and control coefficients (as Wooldridge, 2010, Ch. 21, notes, the

2The following argument also applies if the cohort fixed effects are replaced with unit fixed effects A?,
i=1,... N.

11



standard errors should technically be adjusted for the use of W' in place of E°(Wy|Dy = 1),
although this likely has a small effect on the resulting standard errors).!® Thus, the estimator
can easily be implemented in any statistical package, without any specialized estimation
routine.

The proof of Proposition 2 shows that the one- and two-stage estimators are equivalent
regardless of whether they are specified using individual or cohort fixed effects, and the proof
of Proposition 1 shows that both estimators are consistent in either case. However, there are
practical reasons to prefer specifications with cohort fixed effects when using the one-stage
approach. The first is computational: while a within transformation can be used to remove
unit fixed effects, their demeaned interactions with treatment status must be included in
the estimating equation, which may be impractical when there are many units. The second
concerns inference: because OLS with unit fixed effects forces the residuals to sum to zero
within units, standard errors that are clustered at or above the individual level will be
mechanically biased.'* The two-stage approach may therefore be preferable in estimating
models that include unit fixed effects, although the parallel trends conditions that motivate
the use of difference-in-difference analyses usually support the use of cohort fixed effects.
Furthermore, regardless of whether point estimates are obtained by the one- or two-stage

procedure, standard errors can also be bootstrapped (which may provide better inference

13In Stata, at least, it is also relatively simple to account for the sampling variation in X! by estimating
the ATT as X6, then calculating delta-method standard errors using the margins command with the
unconditional option.

MMore specifically, the issue arises because the unit-specific sums of the residuals from a model that
includes unit fixed effects must be zero, but these sums are a component of the cluster-robust estimate of
the variance of those fixed effects. To see this, recall that the one-stage estimator can also be obtained by
estimating treatment-status-specific regressions of outcomes on unit and time fixed effects, taking treated-
untreated differences in those effects, then averaging the sum of differential unit and time effects over the
treated sample. From the OLS first-order conditions, the estimated unit fixed effects are (ignoring treatment
status for the sake of simplicity) A; = ¥; — X/5, where § includes the coefficients on the time effects (as well
as any other covariates). Hence, the conditional variance of A; is Var(&;]X) + X!Var(§| X)X, (for example,
a tedious calculation shows that with homoskedastic errors, Var()\;) = o2/T + X/Var(5|X)X;). Under
clustering at any level more coarse than the unit, the natural estimate of the first component is (}_, eit)Q /T?
which is zero by the first-order conditions for OLS (and another calculation shows that the actual estimated
variance is X!Var(6|X)X;), underestimating the variance of the unit effect and, in the one-stage differences
in differences context, the estimated ATT.

12



with few or few treated clusters, due to a similar mechanical bias, see MacKinnon and Webb,

2017; MacKinnon, Nielson and Webb, 2023).

4 Extensions

4.1 Dynamic effects

Difference-in-differences analyses are usually accompanied by “event-study” estimates that
indicate the dynamic path of the treatment over time and provide placebo tests for the
plausibility of parallel trends. Let T; denote the period when treated unit ¢ adopts the
treatment, and D}, = 1(t = T; + 1 = r and C; # o0) for r € {—(T - 2),...,1,..., T — 1}
be (|r] + 1)-period leads (for » < 1) or (r — 1)-period lags (for » > 1) of treatment status
(i.e., D}, represents the first period of treatment and DJ, represents the first period prior to
treatment). Also let Y;;" be the counterfactual effect that ¢ would experience at time ¢ after
being treated for r periods, and define " = E°(Y,l" — Y?| DI, = 1).

First, consider the case where » > 1. Under the two-stage difference-in-differences
methodology, regressing adjusted outcomes Yj; — S\C(i) — 7, on the D}, » > 1, produces
estimates of the average effect of being treated for r periods (on units treated for at least r
periods). The one-stage robust estimator can be adapted to incorporate these dynamic esti-

mands by replacing treatment status D;; with a set of r-period treatment status indicators

Dy, r > 1. Following the logic of Section 3.1, under parallel trends
Yie = Wipo + D {DylWie = B (Wl Dy = 1)]'pr + 5D} + v (5)
r>1

so that

E°[E(Y" = Yi|Wa)| Dy = 1] = E° (Wi — E°(Wy|Djy = 1)| Djy = 1] pr + 87 = ",

13



and hence 8" can estimated consistently as the coefficient on D}, from a feasible version of

(5) that regresses outcomes on Wy, D5(Wy — W), and D7,

v, for all 7 > 1, where W1 =
O > WauDy)/ >, >, Dl is the vector of average covariates among units treated for r
periods.

To establish the consistency of the dynamic effects, first note that since the DJ, are
mutually orthogonal, the two-stage estimates of 5" can be obtained from a version of the
two-stage procedure for the overall ATT that replaces D;; in the second stage equation
with DY, (but still estimates the first stage using the subsample of untreated observations).
Consequently, the coefficient on D!, from the dynamic one-stage regression specification (i.e.,
the sample analog of (5)) is identical to the coefficient that would obtain from first subsetting
the data to contain only observations that are untreated or have been treated for exactly
r periods, then estimating a version of the one-stage specification (4) for the overall ATT
that replaces overall treatment status D;; with r-period treatment status D],. Hence, the

consistency of the one-stage dynamic-effect estimates follows from the consistency of the

overall ATT estimates.

4.2 Assessing parallel trends

Placebo adoption There are several ways to implement placebo tests for parallel trends
from within the one-stage approach developed above. To extend the approach to dynamic
effects described above to test for parallel trends, choose some pre-treatment period £ < 0,
and consider a feasible version of (5) (i.e., replacing E°(W;,|D} = 1) with W) that sums
over all r > k (rather than over all r > 1). By the preceding argument, this specification is
equivalent to estimating the dynamic specification after redefining the onset of the treatment
as being |k| + 1 periods before its actual onset.!> Consequently, the estimated coefficients

on D", r € {k,...,0}, represent consistent estimates of |k| + 1 pre-treatment placebo ATTs,

15An implementation note: While the researcher is free to choose k, since both the one- and two-stage
procedures require that there are pre-treatment observations for all units, this placebo test requires that all
units are observed at least |k| 4+ 1 periods before adopting the treatment.
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which can be used to test the plausibility of parallel trends (under which these pre-treatment
ATTs should be zero). The consistency of these estimates follows from the preceding discus-
sion, which implies that this procedure is equivalent to estimating dynamic treatment effects
by two-stage differences in differences, after redefining treatment status as being |k| 4+ 1
periods prior the actual adoption of the treatment.!®

The estimated coefficients on D", r > 1, from a version of specification (5) that sums over
all » > k represent consistent estimates of the r-period post-treatment ATTs 5". However,
because this specification only uses observations that are more than |k| + 1 periods away
from the actual onset of the treatment as the untreated sample, estimates of 5", r > 1, from
this specification will differ from those based on a version of (5) that only sums over r > 1.
The dynamic ATT estimates 5" obtained from the original specification may therefore be
preferable when the data are consistent with parallel trends, since those estimates compare
the same treated observations to a larger sample of untreated observations.

To summarize, the dynamic and placebo effects of the treatment are identified from

regressions of outcomes on

(i) cohort/unit indicators, time indicators, and control variables, collected into the vector

of covariates Wy,

(ii) interactions DI, (W;; — W}) between deviations (Wi, — W) in these covariates from
T

their duration-specific means and duration-specific treatment-status indicators D}, for

all » > k and some £ < 1, and
(iii) duration-specific treatment status indicators D, for all » > k and some k < 1.

The coefficients on D" represent r-period ATTs for r > 1 and placebo tests of parallel trends

for r < 1 (to estimate the dynamic ATTs using as many observations as possible, set k = 1).

16This is one of several approaches to testing parallel trends using two-stage differences in differences. For
other approaches, see Gardner, Thakral, T6, and Yap (2023), Borusyak, Jaravel and Spiess, 2021 and Liu,
Wang and Xu (2023).
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Adapting the traditional specification The simple approach to placebo testing devel-
oped above has some some disadvantages. First, it requires the researcher to specify the
number of placebo periods ahead of time. Second, while under parallel trends, the (popula-
tion) coefficients on the DI, should be zero, when parallel trends is violated, those coefficients
cannot be interpreted as estimates of the average “effects” of being |r| 4 1 periods away from
the treatment (except under the rather strict assumption that parallel trends holds whenever
the adoption of the treatment is more than |k| 4+ 1 periods in the future). In the traditional
(two-way fixed effects) event-study specification, the coefficients on the leads of treatment
status can be interpreted as the average deviation from trends among units that are |r| 4 1
periods away from adopting the treatment, subject of course to the normalization that there
is no deviation from trend in the omitted period (usually, r = 0).17

Gardner, Thakral, T6, and Yap (2023) note that the two-stage procedure can be adapted
to share this property of the traditional event-study specification, even when adoption is
staggered and treatment effects are heterogeneous. Specifically, they note that when the
first-stage is estimated using observations for units that are either never treated or exactly
one period ahead of adopting the treatment, the coefficients on the leads of treatment status
can be interpreted as the average effects of being |r| + 1 periods away from adopting the
treatment (subject to the normalization that this effect is zero in period r = 0).'®

It follows directly from the logic of Section 4.1 that this approach can also be implemented
from within the one-stage framework developed in this paper. In particular, modifying the
dynamic specification (5) to include duration-specific treatment status indicators D}, and
interactions between treatment status and deviations in the covariates (cohort indicators,
time indicators, and control variables) from their duration-specific means D7,(W;; — W)

for all » # 0 produces estimates that are numerically identical to the modified two-stage

170f course, this interpretation is only valid if the adoption is not staggered or treatment effects are
homogeneous.

181t is also easy to verify that, in the absence of covariates, average treatment effects obtained using
this modified version of the two-stage procedure are numerically identical to those from the “never treated”
variant of the Callaway and Sant’Anna (2021) estimator.
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procedure described above. As before, although this modified procedure produces estimates
of the dynamic effects of the treatment (as well as a more readily interpretable test of parallel
trends), estimates of these effects from a version of specification (5) that only uses periods
r > 1 may be more precise, since they compare post-treatment outcomes to a larger pool of

pre-treatment outcomes.

4.3 Other extensions

Triple differences in differences Triple difference specifications are often used in
difference-in-difference analyses when there is reason to believe that parallel trends may
be violated. In the interest of concreteness, suppose that in states that adopt a policy, only
those belonging to a particular group G; € {0, 1} are affected by the treatment. If there is
concern that, regardless of group membership, outcomes evolve differently between treated
and untreated states, the differential outcomes of group non-members can be used to account
for the parallel trends violation among group members.

In the two-stage framework, this triple-differenced strategy can be implemented by mod-
ifying the first stage to include cohortxgroup and timexgroup fixed effects, as well as
cohort xtime fixed effects. The same point estimates can be obtained from within the one-

stage framework by regressing outcomes on

(i) cohortxgroup, timexgroup, cohortxtime indicators, as well as time-varying control

variables X,

(ii) the interaction D;(W; — W) between treatment status and deviations (W;; — W1) in
cohort, time, and cohort xtime indicators, as well as time-varying controls, from their

means among all treated units, and

(iii) treatment status, D.
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Group- and time-averaged ATTs Difference-in-differences analyses sometimes also in-
clude estimates of cohort-specific ATTs 7 = E(Y;} — YDy = 1,7 = 1), j € C. These
ATTs are easy to estimate using the robust one-stage approach: simply replace D;; and
D (Wi — W1 with DitC’ij and DitC'ij(VVit —WWUY), j € C, where WU is the average of the co-
variates among treated observations corresponding to cohort j. These cohort-specific ATTs
can also be averaged (perhaps weighting by relative cohort sizes) using commands available
in standard software.!® An analogous variation on the one-stage approach can be used to
estimate calendar-time specific average treatment effects. Both of these approaches can also
be implemented from within the two-stage framework (e.g., by replacing D;; with DitC’f in

the second stage of the estimator to obtain cohort-specific average treatment effects).

5 Simulations

In order to illustrate the properties of the robust one-stage estimator, I present results
from a number of Monte Carlo simulations corresponding to different data-generating pro-
cesses. In each simulation, there are a total of five time periods, the treatment adoption
times T; € {2,3,4,5,6} are drawn from a discrete uniform distribution, and there are
N € {100,500,1000} panel units (units with 7; = 6 are never treated). For each simu-

lation, observed outcomes are determined by Y = Y;;(0) + D 3;;, where

Yi(0) = Ni + v + X{té + it

Ni =T, + v, v; ~N(0,1), 3, ~ N(0,1), and &;; ~ N(0, 3).

To illustrate the effectiveness of the estimator(s) in different settings, I run simulations
across four different configurations of the data-generating process. In simulation (1), there
are no control covariates, and the treatment effects 5; ~ N(2,1) are drawn independently

of treatment timing. In simulation (2), there are no control covariates, and £ =t — T; + 1.

19For example, using Stata’s 1incom command.
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In simulation (3), there is a time-varying control covariate X;; ~ N(1,1), and the treatment
effect depends on the value of the covariate according to f; =t — T; + 1 + X;;/4. Finally,
in simulation (4), the covariates X;; ~ N(\;/25,1) are correlated with the unit fixed effects,
and the treatment effects 5; = (t —T;+1)X;;/4 interact with the covariates multiplicatively.
For each configuration of the simulations, I report results across 1,000 simulated datasets.

For each simulation, I estimate the overall and duration-specific ATTs using the two- and
one-stage estimators.?? To illustrate its numerical equivalence with the other estimators, I
also estimate the overall ATT using a “manual” version of the one-stage estimator that
computes the ATT as Wiltél, as described in Section 3.1 (along with delta-method standard
errors). For all estimators, I cluster all standard errors at the unit level.

The results from the primary simulations are summarized in Table 1. The entries under
“2SDD,” “1SDD,” and “Manual” are rejection rates for size-.05 tests of the nulls that the
overall and duration-specific ATTs equal their true values. In the interest of completeness, the
table also reports average bias and RMSE across different simulation sizes (these statistics are
only reported once per simulation because the one-stage, two-stage, and manual estimators
are all numerically equivalent).

Across sample sizes and data-generating processes, the conclusion from the simulations
is that the performance of the one- and two-stage estimators is highly comparable, with
both producing rejection rates close to the theoretical 5% rate, particularly as the sample
size increases. Beyond the results for rejection rates, the simulation results also show that
both point estimates and inference for the one-stage approach are numerically equivalent to
its “manual aggregation” variant, and that both the one- and two-stage approaches produce
highly accurate estimates of the average effects of the treatment.

In the appendix, I present two additional sets of simulations. In Appendix Table 4, I
present simulation results from a “fixed design” setting in which treatment status and the

covariates are fixed, so that only the treatment effect (when it is random) and error term are

20T obtained the 2SDD estimates using Kyle Butts’ Stata package did2s (Butts, 2021).
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drawn anew for each simulated dataset. These fixed design simulations design show that both
the one- and two-stage procedures can produce valid inference in this setting, and illustrate
that the comparative performance of the one- and two-stage estimators has little to do with
the fact that former estimator uses the sample value of W in place of the true treated mean
E°(Wi|Dy = 1) (which is equal to its sample value in a fixed design). As the results in the
table show, both the absolute and relative performance of the one- and two-stage estimators
are similar to in the random design. In Appendix Table 5, I present rejection rates for
the extended two-way fixed effects (ETWFE) estimator (Wooldridge, 2025), which can also
recover the two-stage point estimates, from the simulations summarized above in Table 1.
Although my focus here is on illustrating the one-stage estimator as an alternative way of
obtaining the two-stage estimates (as opposed to drawing comparisons among alternative
ways of obtaining this estimate), the results in Appendix Table 5 show that the rejection

rates from the one-stage and ETWFE estimators are very similar.?!

6 Empirical applications

6.1 Cheng and Hoekstra (2013)

To illustrate the application of the one-stage estimator, I revisit Cheng and Hoekstra’s
(2013) analysis of the effects of strengthening the Castle Doctrine, also known as “stand
your ground” laws, on violent crime. In this analysis, the key treatment status variable is an
indicator for whether a state has adopted a stand your ground law in a given year, and the
dependent variable is the state-level average of the log of the number of homicides committed

per 100,000 people in that year. The data span 2000 to 2010, during which 21 states, divided

21T obtain the ETWFE estimates using the jwdid Stata package (Rios-Avila, Nagengast and Yotov, 2024).
In models without covariates, the “simple” aggregate of the cohortxtime-specific ETWFE treatment effect
estimates are numerically identical to the one- and two-stage estimates (i.e., the coefficients on treatment
status). With covariates, the estimates are different because the jwdid package includes covariate-specific
time trends by default, and these are the specifications I use in the simulation results. However, I obtain
similar results when I manually estimate a variant of the ETWFE specification that recreates the one- and
two-stage estimates in settings with covariates.
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into five treatment cohorts, adopt the treatment between 2006 and 2010.
Table 2 compares the results from one- and two-stage difference-in-difference estimates

2 All of the point estimates discussed in this

of the impact of these laws on homicides.?
section are based on models that use cohort fixed effects and also control for the number
of police employed in a given state-year, and all of the standard errors are clustered at the
state level. Columns (1) and (4) report one- and two-stage estimates of the overall ATT.
The point estimates are identical (for the reasons detailed above). The one-stage estimate
has an estimated standard error of about .033, while the estimated standard error of the
two-stage estimate is somewhat larger, at about .041, with both suggesting a statistically
significant effect at conventional levels. From a practical perspective, the results from tests
based on these methods agree with each other.

Columns (2) and (5) present estimates of the dynamic effects of the treatment. The
one-stage estimates are derived from a regression of outcomes on cohort and time indi-
cators, duration-specific treatment status indicators D", r € {1,...,5}, and interactions
D" (W — W") between duration-specific treatment status and deviations in the cohort and
time indicators from their duration-specific treated means. The two-stage estimates are based
on second-stage regressions of adjusted outcomes on the duration-specific treatment status
variables. I also include leads of treatment status in these second-stage regressions, the coef-
ficients on which represent tests of parallel trends, since the two-stage approach makes this
easy, and their inclusion does not affect the estimated coefficients on the duration-specific
treatment-status indicators (note that these placebo tests are notionally different from those
described in Section 4, which are implemented below).?3 As before, the point estimates are
identical (also note that the one-stage estimates reported in column (2) do not include com-

parable tests of parallel trends). The one- and two-stage estimators agree on the statistical

22A11 of the results presented in Table 2 are weighted by statexyear populations size. As a practical
matter, when applying weights using the one-stage approach, it is necessary to use weighted regressions and
deviations in the covariates from their weighted means.

231 obtained these estimates using the Stata package did2s (Butts, 2021) to obtain standard errors that
reflect the first-stage estimation of the adjusted outcomes.
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significance of four of the five duration-specific treatment effects, although they do not al-
ways agree on the precise level of significance (also note that the one-stage standard errors
are not always smaller, though they tend to be). Both approaches lead to the same practical
conclusions about the effect of the treatment.

Columns (3) and (6) present placebo tests of parallel trends that redefine treatment
status to mean being four periods before the actual onset of the treatment. For the one-stage
approach, I implement these tests using the regression specification detailed in Section 4,
setting £ = —3 (i.e., including four leads of treatment status, as well as interactions between
these leads and de-meaned cohort and time indicators in the regression). For the two-stage
approach, I implement these tests by estimating the first stage on a sample of observations
that are never treated or more than four periods away from adopting the treatment, then
including four leads of treatment status (in addition to the five lags) in the second-stage
regression. In this case, tests based on the one- and two-stage approaches agree on the level
of statistical significance for all of the placebo coefficients D", r < 1, although most of the
one-stage standard errors remain smaller than their two-stage counterparts. These placebo
tests also produce “collateral” estimates of the duration-specific treatment effects D", r > 1
(which compare treated observations to a smaller control sample of untreated observations).
Here, the one- and two-stage approaches agree on the level of statistical significance of all
but one of the coefficients. Setting comparisons between the one- and two-stage estimators
aside, it is comforting that signs and significance levels of these collateral estimates agree with
the full-sample estimates presented in columns (2) and (5), and that the placebo estimates
presented in columns (3) and (6) generally agree with the alternative test of parallel trends

presented for the two-stage estimator in column (5).

6.2 Autor (2003)

To further illustrate the application of the one-stage approach, I apply it, along with the two-

stage estimator, to Autor’s (2003) analysis of exceptions to the employment-at-will doctrine
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on temporary employment. The key variables for this analysis are statexyear-level log
employment in the temporary help services industry and time-varying indicators for whether
a state currently has an exception to the doctrine. Following Autor (2003), I limit the sample
to the period spanning 1979-1995. I also drop one state which reversed the treatment after
adopting it. After making these sample selections, a total of 34 states, organized into nine
treatment cohorts, adopt the treatment between 1980 and 1988.

I then estimate the effects of the exception using both the one- and two-stage approaches,
using cohort fixed effects and clustering the standard errors at the state level. The results
are presented in Table 3. The one- and two-stage estimates of the overall ATT are shown in
columns (1) and (4). The point estimates are, naturally, identical and, like Autor’s original
baseline estimate, they are also both statistically insignificant.?* In this case, the standard
error for the one-stage estimator is slightly larger than that for the two-stage estimator,
though they are very similar.

Columns (2) and (5) of Table 3 present estimates of the duration-specific effects of the
treatment (I only present estimates for the first ten post-treatment periods, although the
comparative results for longer durations are similar). As in the Cheng and Hoekstra (2013)
example, the one- and two-stage estimators both lead to the same practical conclusions
about the dynamic effects of the policy (in this case, that they are not statistically different
from zero). In this case, however, the one-stage standard errors remain slightly larger, and
the differences between the one- and two-stage standard errors are much smaller for earlier

durations.?> As in the previous application, column (5) also includes second-stage estimates

24 Autor’s baseline estimate (in a model with no covariates) is .112 with a standard error of .099. He
later presents statistically significant estimates from models that include covariates and state-specific linear
trends. I do not estimate more complicated models here because my purpose is to compare the one- and
two-stage estimates.

250ne potential reason why there is greater divergence between some of the one- and two-stage standard
errors in the Cheng and Hoekstra application than in the Autor application (and in the simulation results
from Section 5) is that the Cheng and Hoekstra data contain a relatively large number of small cohorts
(3/5 of the cohorts contain 2 or fewer states, compared to 4/9 for for the Autor data). Since the cluster-
robust variance estimator is based on the sums of residuals across all units in a state, while the inclusion of
cohort fixed effects means that all residuals in a cohort must sum to zero, these small cohort sizes increase
the likelihood of mechanical bias in the clustered variance estimates. Despite this, the one- and two-stage
estimators point to the same practical conclusions about the overall and dynamic effects of the treatment in
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of the coefficients on the leads of treatment (which should be zero under parallel trends).
Finally, columns (3) and (6) of the table present one- and two-stage estimates of four
periods of placebo effects (as well as ten periods of dynamic effects), i.e., after redefining the
treatment variable to equal one if the treatment begins fewer than four periods in the future.
To ensure that all states are observed prior to the beginning of their “placebo” treatment, I
drop cohorts that adopted the treatment prior to 1983. Once again, the one- and two-stage
estimates lead to the same conclusions (about parallel trends as well as the dynamic effects
of the treatment), though in this application the one-stage standard errors tend to be a bit
larger, and are more different from the corresponding two-stage standard errors than they

are for the overall ATT or for earlier duration-specific effects in columns (2) and (4).

7 Conclusion

The problems associated with traditional regression-based difference-in-differences and event-
study estimators have sparked the development of several alternative, robust estimators that
reliably identify average treatment effect measures, even when adoption is staggered and av-
erage treatment effects are heterogenous. While all of the recently devised alternative estima-
tors offer some robustness to treatment-effect heterogeneity under staggered adoption, some
also have characteristics that make them particularly well-suited for specific environments.
The one-stage regression approach to difference-in-difference and event-study analysis de-
veloped in this paper is motivated intuitively by analogy to matching and regression methods
for selection on observables. It is simple and easy to implement in any statistical package,
using only a single regression that extends the traditional two-way fixed effects specification.
It is also flexible, and can be extended to identify duration-, group- and time- specific aver-
age treatment effects, to test the plausibility of parallel trends, and to accommodate triple
difference-in-differences designs. Because it is also identical to the two-stage difference-in-

differences estimator (and its numerical equivalents), it enjoys many of the advantages of

both applications.
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that estimator. It is, inter alia, robust to the presence of staggered adoption and hetero-
geneous average treatment effects,; efficient (in some circumstances), and readily able to
handle settings where parallel trends only holds conditional on time-varying covariates (and
when treatment effects depend arbitrarily on those covariates). On the other hand, the two-
stage approach is better-suited to models that include many unit fixed effects, and offers
a broader menu of options for testing whether parallel trends holds, while estimators that
produce intermediate estimates of cohortxperiod-specific treatment effects (such as those
developed in Callaway and Sant’Anna, 2021 and Wooldridge, 2025) allow researchers to use
those estimates to report any aggregate of them that they wish.

The one- and two-stage estimators perform similarly in simulation exercises and applied
examples, with both leading to the same practical conclusions. In a simulation setting, both
approaches to estimation result in rejection rates close to the theoretical target rates. In the
empirical examples, not only do the results from the one- and two-stage estimators point to
the same broad conclusions, they also exhibit a high degree of consistency: each methodology
offers multiple ways of estimating average treatment effects and testing the validity of parallel

trends, and the resulting estimates agree both within and across estimation approaches.

Appendix A: Large-sample properties of 2SDD

Proof of Proposition 1. Consistency. Redefine X;; to include time indicators, so that par-
allel trends implies

Yie — A\ — Xi/t5 = Dy + it

Taking deviations from untreated means eliminates the );, so that the second stage of the

estimator can be expressed as

(Y = V) — (X — X7)'0 = BDyy — (e — &),
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where Y2 =[S0, (1 — D) Yal/ So_, (1 — D), and similarly for the elements of X? and the
error £2.26 Note that since g;; = wu;; + (B — B)D;y where Dy, and X, are strictly exogenous
with respect to u; in all untreated periods, those variables are also strictly exogenous with
respect to €; in those periods.?”

Next, write the first-stage estimate of ¢ as

- ( ZZ (1- Dy X3X3’> < ZZ (1— Dy th@t>
L6+ E <2(1 - Dit)X?th) _ E (Zu - th)XZtalt>

t t

where the second line follows by the weak law of large numbers and the assumption that the
inverse exists, and the third from the continuous mapping theorem and the strict exogeneity
of X;. Thus, the first stage estimate of § (which includes the time fixed effects and the
coefficients on the covariates) is consistent.

Next, write the second-stage estimate as

-1

e (2350 (FESpui- )
o (kXT0 (R T iz o st6-)
(VR (VR Ty eae-i)
% B+ E (Z Dit> : —E (Z Dl-tei:'?t> +E (Z DitX3/> .o] =B,

26The foregoing argument can also be applied to a version of the estimator that uses cohort fixed effects by
absorbing cohort dummies into X, then writing the second stage of the estimator as Y;; — X[,6 = 8D;+ + e
(i.e., rather than expressmg it in terms of deviations from untreated means).

27Also note that, since N\ = =Y?- X! 0§ this form of the estimator is equivalent to regressing Y;; — i - X! B
on Dj;.
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where the last line follows from the weak law of large numbers, the continuous mapping
theorem/Slutsky’s theorem (together with the consistency of the first stage), the assumption
that the inverse exists, and the exogeneity of D;;.?8

Asymptotic normality. Consistency implies that
-1
VAt S o oV N B RO o) SYIE RN () o) Sye o8 RO
N4 N 545 ! N4 !
4 N (0, Ay BoAyY)

where Ay = E(>_, Dy) and

By=FE

> Du)*| +E (Z Dith’>
t t
-1
E (Z(l — Dit)X?th) E

t

> X1 — D) X

t

-1
E (Zu - Dit)Xng>
t
E (Z DitX;’t) .
t

In the above, the convergence in distribution comes from a weak law of large numbers, a
central limit theorem, the continuous mapping theorem (for convergence in distribution), and

the fact that 4 is uncorrelated with D;1€Y, because they are drawn from different samples. [

28Note that the existence of the inverse implies that the number of treated units increases without bound
with N. For more detail on the last equality, recall that ;; = w;s + (Bt — 8)Dit, so &% = i, + (Bir —
B)Diy and E (3, Duéir) = E (3, Diiid, + >, (Bit — B)Dit). The first term is zero by the strict exogeneity
of Dj; with respect to u;, while the second term equals ), E(B;:Di) — B>, E(Dit) = >, E(BiDir) —
O, E(BitDit)/ Y-y E(Dit)) >, E(D4) = 0 (this is another way of expressing the idea that E°[(8;: —8)Ds] =
0 when the expectation is taken over all time periods).
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Appendix B: What TWFE “tries” to estimate

Without covariates, parallel trends implies that (after conditioning on cohort membership)

observed outcomes satisfy

cC T
Ycit - )\c + v+ Z ZﬁctDct + Eeit,

c=1 t=1

where D, is an indicator for whether members of cohort ¢ are treated at time ¢ and
Elecitle,t, (Dy)] = 0 (and S = 0 for periods when cohort ¢ is not yet treated). The

traditional TWFE DD specification is
Yot = Ae+ 7+ BV F Dy + gy

Embedding this specification within the true model implied by parallel trends, the term
Y o> i BetDer can be considered an omitted variable, while the “true” coefficient on D;; is
Zero.

By the (population) Frisch-Waugh-Lovell theorem and the usual omitted-variable bias
formula, the population regression coefficient on D;; from the traditional specification can
be recovered as the coeflicient from a population regression of > ", S D¢ on the residual

D;; from a population regression of D;; on cohort and time indicators, or

Cov (Z > i BeDe ) Cov(D
Var(D Z Z Beot——=—— Z Z Bet et

where p. is the coefficient on D;; from a population regression of D, on D; and sets of
cohort and time indicators. As has been noted in the literature (see de Chaisemartin and
D’Haultfeeuille, 2020; Borusyak, Jaravel and Spiess, 2021), one view of the problems asso-
ciated with the traditional TWFE specification is that, because of the inclusion of cohort

and time fixed effects, the p. are not constrained to be positive (and hence TWFE does not
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identify a convex weighted average of cohortxtime-average treatment effects).

This problem arises because the p. represent population coefficients from linear models
of the probability of being treated as a member of cohort ¢ at time ¢ that are misspecified
because they include cohort and time fixed effects in addition to treatment status. If the fixed
effects were omitted from the regressions that produce these weights, the p., would instead
correctly identify the population shares 7., = P(Dy = 1|Dy = 1) of treated unit-times that
correspond to cohort ¢ and time ¢, and the coefficient on treatment status from the TWFE
regression would identify > ", fomq, which is precisely the overall ATT 5 = E°(B8;|Dy =
1). In this sense, the overall ATT is what the traditional TWFE DD specification is “trying”
to estimate, and what the estimators discussed in this paper succeed in estimating after

overcoming the problems associated with the traditional approach.

Appendix C: Additional details on the large-sample prop-

erties of 1SDD

In this section, I present an alternative proof of the consistency of the estimator. Here, I
assume that the estimator is implemented using unit fixed effects, although I also provide
parenthetical justifications for the cohort fixed effects case as well.

The one-stage difference-in-difference regression estimate can alternatively be obtained

by (i) estimating separate regressions on samples of untreated and treated observations
Vi = AN+ X[,0% +ul, de{0,1}, (6)

where the time fixed effects v¢ have been absorbed into the covariates Xy, (ii) forming the

differences 3; = A\ — \) and 3, = 6' — 0°, and (iii) calculating the average effect of the
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treatment on the treated as?®®

1 A~
- thﬂl + thX/ ﬁx .
Zi Zt Dy (2; Zt: 27,: zt: * )

Moreover, each of the treatment-status-specific regressions (6) can be estimated using a

within transformation, and the unit fixed effects recovered as
M=y — X454

where Y = [}, Yil(Dy = d)]/[>°, 1(Dyy = d)] (and similarly for the vector X).
Since §; = Al — A0 where E(\?) = E(Y%) — E(X4)§% a law of large numbers and the

continuous mapping theorem give3’

BHPD — 5 21: Z (Z Dith’) + Z (Z thX/t5x>]
AP ]th - %Z (Z Dal(Vi — XV8%) — (V0 — XY§0)] > Z (Z thX’tﬁm>]
2 mE (Z Dufi+ Y D tX’t@C)

= Eo(ﬁitu}it = 1)7

where the third line uses the fact that N~='3°. Dy(V? — X#5) & E(Y? — X#8|Dy; =

29Tn the case of cohort fixed effects, this can also be expressed as Ejec ijj + Xl,ﬁw where w; is the

fraction of treated observations that correspond to cohort j and X' is the vector of averages of the controls
(including time indicators) among all treated observations.

3n the case of cohort fixed effects, w; = [, 3, Dul(C; = 7)]/(X; 3, Dir) & E[X, D(Ci =
J)]/E(Zt Dt) % T and Xl = (Z Zt 1tXlt)/(Z Zt ) p E(Zt DitXit)/E(Zt Dit)y so that BlSDD —
Zj w; 3 + X5, 5 Zj miB; + E(C Dt X[y Ba) /[ E(32, Dit)-
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Table 2: Empirical example (Cheng and Hoekstra, 2013)

One stage Two stage
(1) (2) (3) (4) (5) (6)
Overall ATT D 0.09017*+* 0.0901**
(0.0332) (0.0412)
Dynamic effects D? 0.102***  0.101°** 0.102***  0.101**
(0.0297)  (0.0417) (0.0355)  (0.0463)
D? 0.0754*%*%  0.0725* 0.0754* 0.0725
(0.0342)  (0.0410) (0.0414)  (0.0449)
D3 0.0853*  0.0655 0.0853 0.0655
(0.0446)  (0.0528) (0.0557)  (0.0583)
D4 0.0771 0.0459 0.0771 0.0459
(0.0509)  (0.0594) (0.0599)  (0.0626)
D? 0.193%#%*%  0.133** 0.193%#F*%  (.133%**
(0.0556)  (0.0547) (0.0533)  (0.0512)
Placebo effects  D° 0.0192 0.0250 0.0192
(0.0409) (0.0239)  (0.0468)
D! -0.0373 -0.0219  -0.0373
(0.0358) (0.0169)  (0.0371)
D2 -0.0229 -0.00113  -0.0229
(0.0345) (0.0146)  (0.0315)
D3 -0.0218 -0.00123  -0.0218
(0.0242) (0.0157)  (0.0248)
D~ 0.00395
(0.0200)
D—° 0.00965
(0.0175)
D=6 0.0360**
(0.0173)
D7 -0.0529
(0.0430)
D8 -0.207#%*
(0.0436)
DY -0.189%**
(0.0237)
N 550 550 550 550 550 550

Notes: Columns (1) and (4) are 1SDD and 2SDD overall ATT estimates, respectively.
Columns (2) and (5) contain the 1SDD and 2SDD estimates of the dynamic post-treatment
effects (column (5) also contains the default 2SDD placebo tests of parallel trends). Columns
(3) and (6) contain 1SDD and 2SDD placebo tests of parallel trends that assume the treat-
ment begins four periods before its actual adoption (i.e., pretends that D = 1 if r > —3), as
well as the post-treatment dynamic effects implied by this placebo assumption. All estimates
control for police per capita, use cohort fixed effects, and cluster at the state level.
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Table 3: Empirical example (Autor, 2003)

One stage Two stage
(1) (2) (3) (4) () (6)
Overall ATT D 0.0628 0.0628
(0.175) (0.171)
Dynamic effects D* 0.0843  -0.0557 0.0843  -0.0557
(0.0680)  (0.184) (0.0650)  (0.170)
D? 0.0908  -0.0190 0.0908  -0.0190
(0.0879)  (0.208) (0.0802)  (0.187)
D3 0.144 0.0901 0.144 0.0901
(0.120)  (0.239) (0.110)  (0.219)
D4 0.0159  -0.0746 0.0159  -0.0746
(0.141)  (0.270) (0.131)  (0.245)
D? 0.0789  0.0278 0.0789  0.0278
(0.169)  (0.293) (0.155)  (0.264)
Db 0.123 0.128 0.123 0.128
(0.204)  (0.324) (0.190)  (0.294)
D7 0.0911  0.0633 0.0911  0.0633
(0.222)  (0.343) (0.203)  (0.310)
D? 0.0877  0.0564 0.0877  0.0564
(0.252)  (0.362) (0.231)  (0.326)
D? 0.0378  0.0467 0.0378  0.0467
(0.264)  (0.372) (0.241)  (0.335)
D10 -0.0730  -0.143 -0.0730  -0.143
(0.276)  (0.417) (0.252)  (0.373)
Placebo effects  D° -0.0889 -0.0254  -0.0889
(0.432) (0.0311)  (0.394)
D! 0.393 -0.0252 0.393
(0.516) (0.0291)  (0.455)
D2 -0.133 -0.0338  -0.133
(0.136) (0.0437)  (0.125)
D73 0.0145 0.0616  0.0145
(0.0801) (0.0391) (0.0813)
D™ 0.00181
(0.0553)
D3 -0.0121
(0.0482)
D¢ 0.0718*
(0.0435)
D7 0.0983
(0.114)
D8 -0.151
(0.157)
N 714 714 476 714 714 476

Notes: Columns (1) and (4) are 1SDD and 2SDD overall ATT estimates, respectively.
Columns (2) and (5) contain the 1SDD and 2SDD estimates of the dynamic post-treatment
effects (column (5) also contains the default 2SDD placebo tests of parallel trends). Columns
(3) and (6) contain 1SDD and 2SDD placebo tests of parallel trends that assume the treat-
ment begins four periods before its actual adoption (i.e., pretends that D = 1 if r > —3), as
well as the post-treatment dynamic effects implied by this placebo assumption. All estimates
use cohort fixed effects, and cluster at the state level. Only the first ten post-treatment pe-
riods are shown (results for omitted periods are similar). Samples for columns (3) and (6)
exclude observations that do not have at leas§6ﬁve pre-treatment periods.



Appendix tables
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