
One-stage robust difference-in-differences regression

John Gardner∗

This version: Jan., 2026†

Abstract

I develop a simple method of combining regression with difference-in-difference and
event-study designs to obtain treatment effect estimates that are robust to the presence
of average treatment-effect heterogeneity under staggered rollout. The resulting estima-
tor can be obtained via a single regression, which automatically produces approximately
valid asymptotic standard errors. This one-stage estimator is numerically equivalent
to the two-stage difference-in-differences estimator developed in Gardner (2021) and
Gardner, Thakral, Tô, and Yap (2023) (which is also the same as the estimators de-
veloped in Borusyak, Jaravel and Spiess, 2021 and Liu, Wang and Xu, 2023 and can
also be obtained from the estimators developed in Wooldridge, 2025 and Deb et al.,
2024), and therefore inherits the robustness (and other) properties of those estimators.
The estimator can also be extended to identify other treatment-effect measures and
implement placebo tests of parallel trends. I illustrate the properties and application
of this approach using simulations and applications from the literature.

Keywords: Differences-in-differences, event-studies, treatment effects, treatment-
effect heterogeneity, matching, regression, causal inference.

JEL codes: C01, C10, C21, C22, C23.

∗Department of Economics, University of Mississippi, jrgardne@olemiss.edu. I thank Jeff Wooldridge,
Len Goff, Matt Webb, and seminar participants at the Midwestern Econometrics Association and Southern
Economic Association annual meetings for helpful comments and suggestions.

†Previous versions: July, 2025, 20 March, 2024, 11 Jan., 2023, 1 Dec., 2023.



1 Introduction

It is now widely known that difference-in-differences and event-study estimates based on tra-

ditional two-way-fixed-effects regression specifications do not always identify sensible mea-

sures of average treatment effects when the adoption of a treatment is staggered over time

and duration-specific average treatment effects are heterogeneous across treatment cohorts

(see de Chaisemartin and D’Haultfœuille, 2020; Borusyak, Jaravel and Spiess, 2021; Sun

and Abraham, 2021; Goodman-Bacon, 2022). These observations have spawned a prolifer-

ation of alternative estimators that are robust to the problems facing traditional regression

specifications in the staggered and heterogeneous setting (see, e.g., Borusyak, Jaravel and

Spiess, 2021; Callaway and Sant’Anna, 2021; de Chaisemartin and D’Haultfœuille, 2020;

Dube, Jordà and Taylor, 2023; Gardner, 2021; Gardner, Thakral, Tô, and Yap, 2023; Liu,

Wang and Xu, 2023; Sun and Abraham, 2021; Wooldridge, 2025; Deb, Norton, Wooldridge

and Norton, 2024).

In this paper, I develop a new approach to robust identification of average treatment ef-

fects using difference-in-difference designs in this setting, motivated by analogy to matching

and regression methods for identifying causal effects under selection on observables. A key

advantage of this new approach is that it only requires the estimation of a single regression,

which automatically produces estimates of the overall average effect of the treatment on the

treated, along with approximately valid asymptotic standard errors. Moreover, this approach

does not really add to the growing list of robust estimators. Instead, point estimates obtained

using this approach are identical to those from the two-stage difference-in-differences estima-

tor developed in Gardner (2021) and discussed in greater detail in Gardner, Thakral, Tô, and

Yap (2023), which is also the same as the imputation estimator developed in Borusyak, Jar-

avel and Spiess (2021) and the fixed-effects counterfactual estimator developed in Liu, Wang

and Xu (2023). As a consequence, the one-stage estimator developed in this paper automat-

ically inherits the advantages of these estimators, including robustness to treatment effect

heterogeneity under staggered adoption, efficiency (under the Gauss-Markdov conditions, see
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Borusyak, Jaravel and Spiess, 2021), the ability to control for time-varying covariates (that

evolve exogeneously, see Caetano, Callaway, Payne and Rodrigues, 2022), and arbitrary de-

pendence of treatment effects on those covariates. The one-stage approach that I develop here

is also related, and complementary, to the estimators developed in Wooldridge (2025) and

Deb et al. (2024), which can also recover the two-stage estimate from a regression specifica-

tion.1 Relative to those papers, this paper provides an alternative way of obtaining two-stage

estimates from a single regression. While, in the specifications in those papers, summary

measures of the effect of the treatment are identified as aggregates of group×time-specific

ATTs, in the specifications developed below they are identified directly as the coefficients on

treatment-status variables. Thus, this paper brings some of the simplicity of differences in

differences regression in the 2×2 case to settings with staggered adoption.

This one-stage approach to estimation developed in this paper is flexible. In addition

to the overall average effect of the treatment on the treated, variations on the basic one-

stage regression specification can be used to identify other objects of interest, including

dynamic treatment effects and cohort- or time-specific average treatment effects, as well

as to implement robust triple-differences designs and placebo tests of the parallel trends

assumption. Furthermore, since it ultimately amounts to estimating a single regression, it

can be implemented by anyone using any standard statistical software package, without the

assistance of a specialized estimation routine.

The one-stage estimator developed here is a simple extension of the traditional two-way

fixed effects specification, which makes that specification robust to treatment-effect hetero-

geneity under staggered adoption. The one-stage specification consists of the traditional

specification, plus a set of interaction terms between treatment status and the other vari-

ables included in that specification. The inclusion of these additional terms ensures that

the coefficient on treatment status identifies a particular (and particularly sensible) measure
1The specifications developed in this paper are different from those in Wooldridge (2025) and Deb et al.

(2024), which can also be used to recover point estimates from (variations on) the two-stage estimator. I was
not aware of the equivalence between those estimators and the two-stage approach when writing the initial
versions of this paper.
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of the overall average effect of the treatment on the treated. This overall average effect

of the treatment on the treated can also be viewed as what the traditional two-way fixed

effects difference-in-differences regression “tries” to identify when average treatment effects

are heterogeneous and adoption is staggered.2

In Section 2, below, I outline the environment in which the one-stage approach to differ-

ences in differences developed in this paper applies. Because I formally establish the consis-

tency of this estimator by showing its equivalence to the two-stage difference-in-differences

estimator, I also briefly review the properties of the latter estimator in that section. I moti-

vate and develop the one-stage robust difference-in-difference regression estimator in Section

3. There, I also I show that this one-stage estimator is equivalent to two-stage differences

in differences, and introduce several useful variations on the methodology. In Section 5, I

present evidence on the performance of the one-stage estimator using Monte Carlo simula-

tions. In Section 6, I illustrate the use of the estimator, and compare it to the two-stage

estimator, in the context of two applied examples from the literature. I offer some concluding

remarks in Section 7.

2 Setup, and review of the two-stage approach

Suppose that the data consist of observations on outcomes Yit, treatment status Dit ∈ {0, 1},

and a set of time-varying control variables Xit, for units i = 1, . . . , N and time periods

t = 1, . . . , T . I assume throughout that the covariates Xit are not affected by the treatment.

Further suppose that the treatment is irreversible and unanticipated.3

Let Ci ∈ {2, . . . , T,∞} be the date at which unit i adopts the treatment, and set Ci =∞

if i is never treated during the sample period (drop any observations that are always treated

during the sample period, since no treatment effects are identified for always-treated units).
2I provide more detail on what the traditional specification can be viewed as attempting to identify in

Appendix B.
3It is possible to allow for potential anticipation by redefining Dit to be an indicator for whether unit i

adopts the treatment a certain number of periods after t.
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Also define treatment-cohort indicators Cj
i = 1(Ci = j) ∈ {0, 1} for j ∈ C = {2, . . . , T,∞}.

Let (Y 0
it , Y

1
it ) be the counterfactual untreated and treated outcomes that i would expe-

rience at time t, and βit = Y 1
it − Y 0

it be the time-t causal effect of the treatment for unit i.

I assume for simplicity that the data {Yit, Xit, Ci}, i = 1, . . . , N , t = 1, . . . , T , consist of a

random panel, although all of the results in this paper also apply to repeated-cross-sectional

data.4

Suppose that untreated outcomes follow parallel trends in the sense that

E(Y 0
i,t+1 − Y 0

it |X,Cj) = E(Y 0
i,t+1 − Y 0

it |X,Ck) = ∆γt + ∆X ′itδ

for all j, k ∈ C. Under this parallel trends assumption, and maintaining the no-anticipation

assumption, expected observed outcomes can be expressed as

E(Yit|Xit, Ci, Dit) = λc(i) + γt +X ′itδ + βct(Xit)Dit,

where βct(Xit) = E(Y 1
it − Y 0

it |Ci, Xit) = E(βit|Ci, Xit), and observed outcomes can be ex-

pressed as

Yit = λc(i) + γt +X ′itδ + βct(Xit)Dit + uit. (1)

The two-stage difference-in-differences estimator is based on the implication of parallel

trends that

Yit − λc(i) − γt −X ′itγ = βct(Xit)Dit + uit = βDit + [βct(Xit)− β]Dit + uit ≡ βDit + εit,

where the overall ATT β is defined as the average effect of the treatment on the treated,

with the average taken across all cohorts, covariates, and time periods, which I denote by
4Since all of the estimands discussed in this paper are conditional on Dit = 1, causal effects for members

of the never-treated cohort can be normalized to zero without loss of generality.
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β = E◦(βit|Dit = 1) = E◦[βct(Xit)|Dit = 1], in which case E◦{[βct(Xit) − β]Dit|Dit} =

DitE
◦[βct(Xit)|Dit] − βDit = 0.5 While there are multiple ways of summarizing treatment

effects that vary across cohorts and time periods (see Callaway and Sant’Anna, 2021, for a

good discussion), this notion of the overall ATT is intuitive and, as I discuss in Appendix B,

has the additional advantage of being the analog of what the traditional two-way fixed effects

difference-in-differences specification arguably “tries” (but fails) to identify when adoption is

staggered and treatment effects are heterogeneous.

Thus, if λc, γt, and δ were known, the overall ATT could be estimated from a regression

of adjusted outcomes Yit − λc(i) − γt −X ′δ on treatment status Dit. Although they are not

known, as long as (i) there are untreated observations in every period, and (ii) there are

pre-treatment observations for every eventually-treated unit, λc, γt, and δ can be estimated

from a regression of outcomes on cohort fixed effects, time fixed effects, and time-varying

controls using the sample of untreated observations.6 The two-stage difference-in-differences

estimate β̂2SDD of the overall ATT β is the estimated coefficient on treatment status from a

regression of Yit − λ̂c(i) − γ̂t −X ′itδ̂ on Dit, where λ̂c, γ̂t, δ̂ are estimates of those parameters

obtained from a first-stage regression using the sample of untreated observations. When this

procedure is implemented with cohort fixed effects, the consistency of β̂2SDD follows directly

from the consistency of the first-stage estimates of λc, γt, and δ. In the interest of generality,
5I use the symbol “E◦(·)” to denote expectations over time periods (in addition to other random variables).

This notation implicitly treats βct(Xit) as a single random variable whose distribution varies across covari-
ates, cohorts, and time (as opposed to a sequence of random variables indexed by time), which can motivated
by thinking of a regression of Y on cohort and time indicators as specifying the conditional expectation of out-
comes conditional on time and cohort membership. Note that when some Zit is considered as a single random
variable whose distribution varies across time, E◦(Zit|Dit = 1) =

∑
tE
◦(ZitDit|t)/

∑
tE
◦(Dit|t) [this follows

because, suppressing the subscripts, E◦(Z|D = 1) = E◦(ZD)/E◦(D), where E◦(ZD) =
∑

tE
◦(ZD|t)/T ,

and similarly for E◦(D)], which is also the probability limit of Z̄1 = (
∑

i

∑
t ZitDit)/(

∑
i

∑
tDit). Alterna-

tively, we could maintain the convention that the Zit are separate random variables for each time period and
simply define the estimand of interest to be E[

∑
t(Y

1
it − Y 0

it)Dit]/E(
∑

tDit). I prefer the former approach
since it makes clear the connection between the overall ATT and the ATT in the cross-sectional case and
provides a formal justification for the latter approach, although both lead to the same estimators, and none
of this paper’s formal results rely on the use of the former approach.

6Observed outcomes can also be expressed in terms of unit (rather than cohort) fixed effects as

Yit = λi + γt +X ′itδ + βitDit + uit,

where λc = E(λi|Ci = c) and βit = βit(Xit).
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the following result establishes the consistency and asymptotic distribution of the two-stage

estimator when it is implemented using unit, rather than cohort, fixed effects (although the

argument can be easily be adapted to the case of cohort fixed effects).

Proposition 1. Suppose that (i) E
[∑

t(1−Dit)Ẍ
0
itẌ

0′
it

]
is invertible, where Ẍ0

it denotes the

vector of deviations in unit i’s covariates (including time indicators) from their means across

all periods where i is untreated, (ii) E(uis|Dit, Xit) = 0 for all s and t, and (iii) E (
∑

tDit) 6=

0. Then, under parallel trends and no anticipation, β̂2SDD p−→ β and
√
N(β̂2SDD − β)

a∼

N
(
0, A−10 B0A

−1
0

)
, where A0 and B0 are defined in Appendix A.7

The proof is given in Appendix A.8

3 A robust one-stage regression approach

3.1 Motivation

The motivation for the robust one-stage estimator comes from the literature on matching

and selection on observables. In a cross-sectional setting, if counterfactual outcomes (Y0, Y1)

are independent of treatment status D ∈ {0, 1} conditional on a set X of covariates, then

the conditional counterfactual mean outcome functions E(Yd|X = x), d ∈ {0, 1}, can be

estimated from separate regressions of outcomes on covariates for the treated and untreated

samples, or from a pooled regression of outcomes on the covariates and their interaction with
7Parallel trends implies that E(uit|Dit, Xit) = 0. The assumption that uit is strictly exogeneous is

consistent with the idea that the covariates are not affected by the treatment – there is no feedback from the
errors or the treatment to the covariates. The proof of Proposition 1 can be extended to show the consistency
and asymptotic distribution of a version of the estimator that uses cohort, rather than unit, fixed effects,
by absorbing the cohort dummies into the vector Xit and replacing Ẍit with the (un-demeaned) vector Xit.
Furthermore, some tedious algebra shows that the estimated variances for the dummy-variable and within-
transformation versions of the estimator are identical, so the asymptotic distribution with cohort fixed effects
can also be obtained from Proposition 1, redefining Ẍ0

it to be the deviation from the cohort-specific untreated
mean.

8Butts and Gardner (2022) and Gardner, Thakral, Tô, and Yap (2023) derive the asymptotic distribution
of the estimator (for the dummy-variable and within-transformation cases, respectively) by treating the first-
and second-stages as a joint GMM estimator.
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treatment status:

Y = X ′θ0 +D ·X ′θ1 + q, (2)

where E(q|X,D) = 0. If the counterfactual mean outcome functions are indeed linear in the

covariates, they are identified by these regressions, and the ATT can be estimated as the

sample analog of

ATT = E[E(Y1|X = x)− E(Y0|X = x)|D = 1] = E(X|D = 1)′θ1.

The second, aggregation, step of this procedure can be avoided by replacing the regression

specification (2) with

Y = X ′ρ0 +D[X − E(X|D = 1)]′ρ1 + βD + r. (3)

In this case, the ATT can be estimated as the sample analog of

ATT = β + E[X − E(X|D = 1)|D = 1]′ρ1 = β,

after replacing E(X|D = 1) with its sample analog X̄1 =
∑

iDiXi/(
∑

iDi).9 This modified

approach has at least two practical advantages. First, it may be easier to obtain the treated

means X̄1 than to aggregate the covariate-specific ATTs. Second, regression estimates of

specification (3) will automatically produce asymptotic standard errors for the ATT, which

can be used for hypothesis testing and other statistical inference (as Wooldridge, 2010, notes,

the standard errors should technically account for the estimation of X̄1, although this unlikely

to make much of a difference).

The traditional difference-in-differences estimator regresses outcomes on treatment-cohort

(or unit) and time indicators (abstracting away from any other potential control variables),

in addition to time-varying treatment status. The nexus between the regression-adjustment
9To the best of my knowledge, this observation is due to Wooldridge (2010, Ch. 21).
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matching approach described above and difference-in-differences estimation comes from pre-

tending that these indicators are true covariates (i.e., that they are quasiexperimentally

manipulable). If this were the case, the overall average effect of the treatment could be

identified by matching observations for treated and untreated units belonging to the same

cohort and recorded in the same period.

Extending the regression-adjustment approach to differences in differences presents two

challenges. The first is that treated units can never be matched to untreated versions of

themselves in the same period. All difference-in-differences methodologies circumvent the

impossibility of this thought experiment under a parallel trends assumption, which allows the

evolution of outcomes for untreated units to be used in place of the counterfactual evolution

of untreated outcomes for treated units. While this kind of extrapolation between units

may be suspect in the general context of selection on observables, in difference-in-differences

designs it is actually desirable.

The second challenge is that, while parallel trends implies that untreated mean out-

comes are linear in cohort/unit and time indicators, in the presence of arbitrary heterogene-

ity, treated outcomes will be nonlinear in those variables if treatment effects vary at the

cohort/unit×time level. If the covariates Wit consist of a full set of cohort or unit indicators,

T − 1 relative time indicators, and time-varying controls Xit, parallel trends implies (along

with no anticipation) that untreated outcomes satisfy10

E(Y 0
it |Wit) = λc(i) + γt +X ′itδ ≡ W ′

itθ0,

while treated outcomes satisfy

E(Y 1
it |Wit) = λc(i) + γt +X ′itδ + βct(Xit) ≡ W ′

itθ0 + βct(Xit).

Although the latter expression is nonlinear in the covariates, a closer look at the regression-
10If Wit includes unit rather than cohort indicators, then the cohort becomes the unit, so that λc = λi.
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adjustment approach reveals that what it really requires is that counterfactual outcomes are

linear on average across the treated population. To see that the logic of this approach carries

over to the case of differences in differences, express βct(Xit) in terms of its projection onto

cohort and time indicators (and time-varying controls) as

βct(Xit) = βc + βt +X ′itβx + (βct − βc − βt −X ′itβx) ≡ βc + βt +X ′itβx + β̃ct ≡ W ′
itθ1 + β̃ct,

where, by definition, E◦(β̃ct|Dit = 1) = 0 (with the expectation taken across covariates,

cohorts, and time periods, as in the definition of the overall ATT). Using this decomposition,

we have that

E◦[E(Y 1
it − Y 0

it |Wit)|Dit = 1] = E◦(βc + βt +X ′itβx|Dit = 1) = E◦(Wit|Dit = 1)′θ1.

Thus, the overall ATT β can be estimated as W̄ 1′ θ̂1, where W̄ 1 = (
∑

i

∑
tDitWit)/

∑
i

∑
tDit

is the average of the covariates among treated observations and θ̂1 is the estimated pooled

least-squares regression coefficient vector on DitWit from the specification

Yit = W ′
itθ0 +DitW

′
itθ1 + sit.

Moreover, the aggregation step (calculating W̄ 1′ θ̂1) of this procedure is obviated by using

the alternative specification

Yit = W ′
itρ0 +Dit(Wit − W̄ 1)ρ1 + βDit + rit, (4)

from which β represents the overall ATT. Intuitively, includingDit forces the cohort and time

effects to measure deviations from a reference group×period, while demeaningWit forces this

to be the overall average among the treated.

In other words, the overall ATT can be estimated as the coefficient on treatment status
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from a regression of outcomes on

(i) cohort/unit and and time-period indicators, as well as any time-varying control vari-

ables,

(ii) interactions between treatment status and deviations in cohort/unit indicators, time

indicators, and time-varying controls from their means among treated observations,

and

(iii) treatment status.

Note that (ii) above is the only difference between this robust one-stage specification and

the traditional two-way fixed effects specification.

3.2 Properties

When specification (4) includes cohort fixed effects, it is easy to see that the one-stage robust

difference-in-differences regression estimator is consistent for the overall ATT: in this case,

since E(Yit|Wit) = W ′
itρ0 + Dit[Wit − E◦(Wit|Dit = 1)]′ρ1 + βDit, and the vector W̄ 1 of

average cohort indicators, time indicators, and controls among the treated converges to its

population analog E◦(Wit|Dit = 1) by a law of large numbers, β̂1SDD is consistent by an

application of the continuous mapping theorem and pooled OLS arguments.11

More formally, the consistency and asymptotic distribution of the one-stage estimator

can be established by the following result (I also provide an alternative, direct analysis of

the one-stage estimator in Appendix C).

Proposition 2. The one-stage robust difference-in-differences regression estimator is nu-

merically equivalent to the two-stage difference-in-differences estimator: β̂1SDD = β̂2SDD.
11Alternatively, one can appeal to general consistency results for two-stage estimators (see Newey and Mc-

Fadden, 1994; Wooldridge, 2010, chapter 12). Identification for pooled OLS also requires that E (
∑

tQitQ
′
it)

is invertible, where Qit = [Wit, Dit(Wit − W̄ 1), Dit] is the vector of observations on all covariates for unit i
at time t. This requires that the cohort sizes increase with the sample size.

10



Proof. Let λ̂0c , c ∈ C, γ̂0t , t = 1, . . . , T , and δ̂0 denote the estimated cohort fixed effects,

time fixed effects, and coefficients on time-varying controls from a first-stage regression of

outcomes on those variables, obtained from the sample of untreated observations.12 The

two stage difference-in-differences estimator is the coefficient on Dit from a second-stage

regression of Yit−λ̂0c(i)−γ̂0t−X ′itδ̂0 onDit (with no constant term). SinceDit andDit(Wit−W̄ 1)

are orthogonal, the term Dit(Wit−W̄ 1) can be added to the second-stage regression without

changing the estimated coefficient on Dit. Now, if λ̂0c , λ̂0t , and δ̂0 were the same as the

estimated cohort effects, time effects, and control coefficients λ̂1SDD
c , γ̂1SDD

t , and δ̂1SDD from

the one-stage regression specification of Yit onWit, Dit(Wit−W̄it), andDit, then the estimated

coefficient β̂1SDD on Dit from the one-stage specification would be identical to β̂2SDD (this

is an exercise in partitioned regression mechanics; see, for example, Greene, 2018, Ch. 3) .

By the Frisch-Waugh-Lovell theorem, λ̂1SDD
c , λ̂1SDD

t , and δ̂1SDD can be obtained from

a regression of Yit on the residuals from auxiliary regressions of the elements of Wit on

Dit and Dit(Wit − W̄ )1. However, since Dit and Dit(Wit − W̄ ) perfectly predict Wit for

treated observations (if Dit = 1, we can always write the kth element of Wit as Wkit =

Dit(Wkit− W̄k) + W̄kDit), these residuals will be zero for all treated observations. Therefore,

λ̂1SDD
c , λ̂1SDD

t , and δ̂1SDD can also be obtained by regressing Yit on Wit in the sample of

untreated observations. That is, λ̂1SDD
c , λ̂1SDD

t , and δ̂1SDD equal λ̂0c , λ̂0t , and δ̂0.

Thus, the one-stage robust regression estimator is identical to the two-stage difference-

in-differences estimator, and the consistency of the former follows formally from that of

the latter. The implication of Proposition 2 is that the one-stage approach is another way

of obtaining two-stage difference-in-differences estimates. The primary advantage of the

one-stage approach is that regression estimates of specification (4) automatically produce

standard error estimates that do not need to be adjusted to account for the first-stage

estimation of the fixed effects and control coefficients (as Wooldridge, 2010, Ch. 21, notes, the

12The following argument also applies if the cohort fixed effects are replaced with unit fixed effects λ̂0i ,
i = 1, . . . , N .
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standard errors should technically be adjusted for the use of W̄ 1 in place of E◦(Wit|Dit = 1),

although this likely has a small effect on the resulting standard errors).13 Thus, the estimator

can easily be implemented in any statistical package, without any specialized estimation

routine.

The proof of Proposition 2 shows that the one- and two-stage estimators are equivalent

regardless of whether they are specified using individual or cohort fixed effects, and the proof

of Proposition 1 shows that both estimators are consistent in either case. However, there are

practical reasons to prefer specifications with cohort fixed effects when using the one-stage

approach. The first is computational: while a within transformation can be used to remove

unit fixed effects, their demeaned interactions with treatment status must be included in

the estimating equation, which may be impractical when there are many units. The second

concerns inference: because OLS with unit fixed effects forces the residuals to sum to zero

within units, standard errors that are clustered at or above the individual level will be

mechanically biased.14 The two-stage approach may therefore be preferable in estimating

models that include unit fixed effects, although the parallel trends conditions that motivate

the use of difference-in-difference analyses usually support the use of cohort fixed effects.

Furthermore, regardless of whether point estimates are obtained by the one- or two-stage

procedure, standard errors can also be bootstrapped (which may provide better inference
13In Stata, at least, it is also relatively simple to account for the sampling variation in X̄1 by estimating

the ATT as X̄1′ θ̂1, then calculating delta-method standard errors using the margins command with the
unconditional option.

14More specifically, the issue arises because the unit-specific sums of the residuals from a model that
includes unit fixed effects must be zero, but these sums are a component of the cluster-robust estimate of
the variance of those fixed effects. To see this, recall that the one-stage estimator can also be obtained by
estimating treatment-status-specific regressions of outcomes on unit and time fixed effects, taking treated-
untreated differences in those effects, then averaging the sum of differential unit and time effects over the
treated sample. From the OLS first-order conditions, the estimated unit fixed effects are (ignoring treatment
status for the sake of simplicity) λ̂i = Ȳi − X̄ ′i δ̂, where δ̂ includes the coefficients on the time effects (as well
as any other covariates). Hence, the conditional variance of λ̂i is V ar(ε̄i|X) + X̄ ′iV ar(δ̂|X)X̄i (for example,
a tedious calculation shows that with homoskedastic errors, V ar(λ̂i) = σ2/T + X̄ ′iV ar(δ̂|X)X̄i). Under
clustering at any level more coarse than the unit, the natural estimate of the first component is (

∑
t eit)

2
/T 2

which is zero by the first-order conditions for OLS (and another calculation shows that the actual estimated
variance is X̄ ′iV ar(δ̂|X)X̄i), underestimating the variance of the unit effect and, in the one-stage differences
in differences context, the estimated ATT.
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with few or few treated clusters, due to a similar mechanical bias, see MacKinnon and Webb,

2017; MacKinnon, Nielson and Webb, 2023).

4 Extensions

4.1 Dynamic effects

Difference-in-differences analyses are usually accompanied by “event-study” estimates that

indicate the dynamic path of the treatment over time and provide placebo tests for the

plausibility of parallel trends. Let Ti denote the period when treated unit i adopts the

treatment, and Dr
it = 1(t − Ti + 1 = r and Ci 6= ∞) for r ∈ {−(T − 2), . . . , 1, . . . , T − 1}

be (|r| + 1)-period leads (for r < 1) or (r − 1)-period lags (for r ≥ 1) of treatment status

(i.e., D1
it represents the first period of treatment and D0

it represents the first period prior to

treatment). Also let Y 1r
it be the counterfactual effect that i would experience at time t after

being treated for r periods, and define βr = E◦(Y 1r
it − Y 0

it |Dr
it = 1).

First, consider the case where r ≥ 1. Under the two-stage difference-in-differences

methodology, regressing adjusted outcomes Yit − λ̂c(i) − γ̂t on the Dr
it, r ≥ 1, produces

estimates of the average effect of being treated for r periods (on units treated for at least r

periods). The one-stage robust estimator can be adapted to incorporate these dynamic esti-

mands by replacing treatment status Dit with a set of r-period treatment status indicators

Dr
it, r ≥ 1. Following the logic of Section 3.1, under parallel trends

Yit = W ′
itρ0 +

∑
r≥1

{Dr
it[Wit − E◦(Wit|Dr

it = 1)]′ρ1 + βrDr
it}+ vit, (5)

so that

E◦[E(Y 1r
it − Y 0

it |Wit)|Dr
it = 1] = E◦[Wit − E◦(Wit|Dr

it = 1)|Dr
it = 1]′ρ1 + βr = βr,
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and hence βr can estimated consistently as the coefficient on Dr
it from a feasible version of

(5) that regresses outcomes on Wit, Dr
it(Wit − W̄ 1r), and Dr

it, for all r ≥ 1, where W̄ 1r =

(
∑

i

∑
tWitD

r
it)/
∑

i

∑
tD

r
it is the vector of average covariates among units treated for r

periods.

To establish the consistency of the dynamic effects, first note that since the Dr
it are

mutually orthogonal, the two-stage estimates of βr can be obtained from a version of the

two-stage procedure for the overall ATT that replaces Dit in the second stage equation

with Dr
it (but still estimates the first stage using the subsample of untreated observations).

Consequently, the coefficient on Dr
it from the dynamic one-stage regression specification (i.e.,

the sample analog of (5)) is identical to the coefficient that would obtain from first subsetting

the data to contain only observations that are untreated or have been treated for exactly

r periods, then estimating a version of the one-stage specification (4) for the overall ATT

that replaces overall treatment status Dit with r-period treatment status Dr
it. Hence, the

consistency of the one-stage dynamic-effect estimates follows from the consistency of the

overall ATT estimates.

4.2 Assessing parallel trends

Placebo adoption There are several ways to implement placebo tests for parallel trends

from within the one-stage approach developed above. To extend the approach to dynamic

effects described above to test for parallel trends, choose some pre-treatment period k ≤ 0,

and consider a feasible version of (5) (i.e., replacing E◦(Wit|D1r
it = 1) with W̄ 1r) that sums

over all r ≥ k (rather than over all r ≥ 1). By the preceding argument, this specification is

equivalent to estimating the dynamic specification after redefining the onset of the treatment

as being |k| + 1 periods before its actual onset.15 Consequently, the estimated coefficients

on Dr, r ∈ {k, . . . , 0}, represent consistent estimates of |k|+ 1 pre-treatment placebo ATTs,
15An implementation note: While the researcher is free to choose k, since both the one- and two-stage

procedures require that there are pre-treatment observations for all units, this placebo test requires that all
units are observed at least |k|+ 1 periods before adopting the treatment.
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which can be used to test the plausibility of parallel trends (under which these pre-treatment

ATTs should be zero). The consistency of these estimates follows from the preceding discus-

sion, which implies that this procedure is equivalent to estimating dynamic treatment effects

by two-stage differences in differences, after redefining treatment status as being |k| + 1

periods prior the actual adoption of the treatment.16

The estimated coefficients on Dr, r ≥ 1, from a version of specification (5) that sums over

all r ≥ k represent consistent estimates of the r-period post-treatment ATTs βr. However,

because this specification only uses observations that are more than |k| + 1 periods away

from the actual onset of the treatment as the untreated sample, estimates of βr, r ≥ 1, from

this specification will differ from those based on a version of (5) that only sums over r ≥ 1.

The dynamic ATT estimates βr obtained from the original specification may therefore be

preferable when the data are consistent with parallel trends, since those estimates compare

the same treated observations to a larger sample of untreated observations.

To summarize, the dynamic and placebo effects of the treatment are identified from

regressions of outcomes on

(i) cohort/unit indicators, time indicators, and control variables, collected into the vector

of covariates Wit,

(ii) interactions Dr
it(Wit − W̄ r

it) between deviations (Wit − W̄ r) in these covariates from

their duration-specific means and duration-specific treatment-status indicators Dr
it, for

all r ≥ k and some k ≤ 1, and

(iii) duration-specific treatment status indicators Dr
it, for all r ≥ k and some k ≤ 1.

The coefficients on Dr represent r-period ATTs for r ≥ 1 and placebo tests of parallel trends

for r < 1 (to estimate the dynamic ATTs using as many observations as possible, set k = 1).
16This is one of several approaches to testing parallel trends using two-stage differences in differences. For

other approaches, see Gardner, Thakral, Tô, and Yap (2023), Borusyak, Jaravel and Spiess, 2021 and Liu,
Wang and Xu (2023).
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Adapting the traditional specification The simple approach to placebo testing devel-

oped above has some some disadvantages. First, it requires the researcher to specify the

number of placebo periods ahead of time. Second, while under parallel trends, the (popula-

tion) coefficients on the Dr
it should be zero, when parallel trends is violated, those coefficients

cannot be interpreted as estimates of the average “effects” of being |r|+ 1 periods away from

the treatment (except under the rather strict assumption that parallel trends holds whenever

the adoption of the treatment is more than |k|+ 1 periods in the future). In the traditional

(two-way fixed effects) event-study specification, the coefficients on the leads of treatment

status can be interpreted as the average deviation from trends among units that are |r|+ 1

periods away from adopting the treatment, subject of course to the normalization that there

is no deviation from trend in the omitted period (usually, r = 0).17

Gardner, Thakral, Tô, and Yap (2023) note that the two-stage procedure can be adapted

to share this property of the traditional event-study specification, even when adoption is

staggered and treatment effects are heterogeneous. Specifically, they note that when the

first-stage is estimated using observations for units that are either never treated or exactly

one period ahead of adopting the treatment, the coefficients on the leads of treatment status

can be interpreted as the average effects of being |r| + 1 periods away from adopting the

treatment (subject to the normalization that this effect is zero in period r = 0).18

It follows directly from the logic of Section 4.1 that this approach can also be implemented

from within the one-stage framework developed in this paper. In particular, modifying the

dynamic specification (5) to include duration-specific treatment status indicators Dr
it and

interactions between treatment status and deviations in the covariates (cohort indicators,

time indicators, and control variables) from their duration-specific means Dr
it(Wit − W̄ r)

for all r 6= 0 produces estimates that are numerically identical to the modified two-stage
17Of course, this interpretation is only valid if the adoption is not staggered or treatment effects are

homogeneous.
18It is also easy to verify that, in the absence of covariates, average treatment effects obtained using

this modified version of the two-stage procedure are numerically identical to those from the “never treated”
variant of the Callaway and Sant’Anna (2021) estimator.
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procedure described above. As before, although this modified procedure produces estimates

of the dynamic effects of the treatment (as well as a more readily interpretable test of parallel

trends), estimates of these effects from a version of specification (5) that only uses periods

r ≥ 1 may be more precise, since they compare post-treatment outcomes to a larger pool of

pre-treatment outcomes.

4.3 Other extensions

Triple differences in differences Triple difference specifications are often used in

difference-in-difference analyses when there is reason to believe that parallel trends may

be violated. In the interest of concreteness, suppose that in states that adopt a policy, only

those belonging to a particular group Gi ∈ {0, 1} are affected by the treatment. If there is

concern that, regardless of group membership, outcomes evolve differently between treated

and untreated states, the differential outcomes of group non-members can be used to account

for the parallel trends violation among group members.

In the two-stage framework, this triple-differenced strategy can be implemented by mod-

ifying the first stage to include cohort×group and time×group fixed effects, as well as

cohort×time fixed effects. The same point estimates can be obtained from within the one-

stage framework by regressing outcomes on

(i) cohort×group, time×group, cohort×time indicators, as well as time-varying control

variables Xit,

(ii) the interaction Dit(Wit− W̄ 1
it) between treatment status and deviations (Wit− W̄ 1) in

cohort, time, and cohort×time indicators, as well as time-varying controls, from their

means among all treated units, and

(iii) treatment status, Dit.
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Group- and time-averaged ATTs Difference-in-differences analyses sometimes also in-

clude estimates of cohort-specific ATTs βj = E(Y 1
it − Y 0

it |Dit = 1, Cj
i = 1), j ∈ C. These

ATTs are easy to estimate using the robust one-stage approach: simply replace Dit and

Dit(Wit− W̄ 1) with DitC
j
i and DitC

j
i (Wit− W̄ 1j), j ∈ C, where W̄ 1j is the average of the co-

variates among treated observations corresponding to cohort j. These cohort-specific ATTs

can also be averaged (perhaps weighting by relative cohort sizes) using commands available

in standard software.19 An analogous variation on the one-stage approach can be used to

estimate calendar-time specific average treatment effects. Both of these approaches can also

be implemented from within the two-stage framework (e.g., by replacing Dit with DitC
j
i in

the second stage of the estimator to obtain cohort-specific average treatment effects).

5 Simulations

In order to illustrate the properties of the robust one-stage estimator, I present results

from a number of Monte Carlo simulations corresponding to different data-generating pro-

cesses. In each simulation, there are a total of five time periods, the treatment adoption

times Ti ∈ {2, 3, 4, 5, 6} are drawn from a discrete uniform distribution, and there are

N ∈ {100, 500, 1000} panel units (units with Ti = 6 are never treated). For each simu-

lation, observed outcomes are determined by Yit = Yit(0) +Ditβit, where

Yit(0) = λi + γt +X ′itδ + εit,

λi = Ti + νi, νi ∼ N(0, 1), γt ∼ N(0, 1), and εit ∼ N(0, 3).

To illustrate the effectiveness of the estimator(s) in different settings, I run simulations

across four different configurations of the data-generating process. In simulation (1), there

are no control covariates, and the treatment effects βit ∼ N(2, 1) are drawn independently

of treatment timing. In simulation (2), there are no control covariates, and βit = t− Ti + 1.
19For example, using Stata’s lincom command.
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In simulation (3), there is a time-varying control covariate Xit ∼ N(1, 1), and the treatment

effect depends on the value of the covariate according to βit = t − Ti + 1 + Xit/4. Finally,

in simulation (4), the covariates Xit ∼ N(λi/25, 1) are correlated with the unit fixed effects,

and the treatment effects βit = (t−Ti +1)Xit/4 interact with the covariates multiplicatively.

For each configuration of the simulations, I report results across 1,000 simulated datasets.

For each simulation, I estimate the overall and duration-specific ATTs using the two- and

one-stage estimators.20 To illustrate its numerical equivalence with the other estimators, I

also estimate the overall ATT using a “manual” version of the one-stage estimator that

computes the ATT as W̄ 1
itθ̂1, as described in Section 3.1 (along with delta-method standard

errors). For all estimators, I cluster all standard errors at the unit level.

The results from the primary simulations are summarized in Table 1. The entries under

“2SDD,” “1SDD,” and “Manual” are rejection rates for size-.05 tests of the nulls that the

overall and duration-specific ATTs equal their true values. In the interest of completeness, the

table also reports average bias and RMSE across different simulation sizes (these statistics are

only reported once per simulation because the one-stage, two-stage, and manual estimators

are all numerically equivalent).

Across sample sizes and data-generating processes, the conclusion from the simulations

is that the performance of the one- and two-stage estimators is highly comparable, with

both producing rejection rates close to the theoretical 5% rate, particularly as the sample

size increases. Beyond the results for rejection rates, the simulation results also show that

both point estimates and inference for the one-stage approach are numerically equivalent to

its “manual aggregation” variant, and that both the one- and two-stage approaches produce

highly accurate estimates of the average effects of the treatment.

In the appendix, I present two additional sets of simulations. In Appendix Table 4, I

present simulation results from a “fixed design” setting in which treatment status and the

covariates are fixed, so that only the treatment effect (when it is random) and error term are
20I obtained the 2SDD estimates using Kyle Butts’ Stata package did2s (Butts, 2021).
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drawn anew for each simulated dataset. These fixed design simulations design show that both

the one- and two-stage procedures can produce valid inference in this setting, and illustrate

that the comparative performance of the one- and two-stage estimators has little to do with

the fact that former estimator uses the sample value of W̄ 1 in place of the true treated mean

E◦(Wit|Dit = 1) (which is equal to its sample value in a fixed design). As the results in the

table show, both the absolute and relative performance of the one- and two-stage estimators

are similar to in the random design. In Appendix Table 5, I present rejection rates for

the extended two-way fixed effects (ETWFE) estimator (Wooldridge, 2025), which can also

recover the two-stage point estimates, from the simulations summarized above in Table 1.

Although my focus here is on illustrating the one-stage estimator as an alternative way of

obtaining the two-stage estimates (as opposed to drawing comparisons among alternative

ways of obtaining this estimate), the results in Appendix Table 5 show that the rejection

rates from the one-stage and ETWFE estimators are very similar.21

6 Empirical applications

6.1 Cheng and Hoekstra (2013)

To illustrate the application of the one-stage estimator, I revisit Cheng and Hoekstra’s

(2013) analysis of the effects of strengthening the Castle Doctrine, also known as “stand

your ground” laws, on violent crime. In this analysis, the key treatment status variable is an

indicator for whether a state has adopted a stand your ground law in a given year, and the

dependent variable is the state-level average of the log of the number of homicides committed

per 100,000 people in that year. The data span 2000 to 2010, during which 21 states, divided
21I obtain the ETWFE estimates using the jwdid Stata package (Rios-Avila, Nagengast and Yotov, 2024).

In models without covariates, the “simple” aggregate of the cohort×time-specific ETWFE treatment effect
estimates are numerically identical to the one- and two-stage estimates (i.e., the coefficients on treatment
status). With covariates, the estimates are different because the jwdid package includes covariate-specific
time trends by default, and these are the specifications I use in the simulation results. However, I obtain
similar results when I manually estimate a variant of the ETWFE specification that recreates the one- and
two-stage estimates in settings with covariates.
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into five treatment cohorts, adopt the treatment between 2006 and 2010.

Table 2 compares the results from one- and two-stage difference-in-difference estimates

of the impact of these laws on homicides.22 All of the point estimates discussed in this

section are based on models that use cohort fixed effects and also control for the number

of police employed in a given state-year, and all of the standard errors are clustered at the

state level. Columns (1) and (4) report one- and two-stage estimates of the overall ATT.

The point estimates are identical (for the reasons detailed above). The one-stage estimate

has an estimated standard error of about .033, while the estimated standard error of the

two-stage estimate is somewhat larger, at about .041, with both suggesting a statistically

significant effect at conventional levels. From a practical perspective, the results from tests

based on these methods agree with each other.

Columns (2) and (5) present estimates of the dynamic effects of the treatment. The

one-stage estimates are derived from a regression of outcomes on cohort and time indi-

cators, duration-specific treatment status indicators Dr, r ∈ {1, . . . , 5}, and interactions

Dr(Wit − W̄ r) between duration-specific treatment status and deviations in the cohort and

time indicators from their duration-specific treated means. The two-stage estimates are based

on second-stage regressions of adjusted outcomes on the duration-specific treatment status

variables. I also include leads of treatment status in these second-stage regressions, the coef-

ficients on which represent tests of parallel trends, since the two-stage approach makes this

easy, and their inclusion does not affect the estimated coefficients on the duration-specific

treatment-status indicators (note that these placebo tests are notionally different from those

described in Section 4, which are implemented below).23 As before, the point estimates are

identical (also note that the one-stage estimates reported in column (2) do not include com-

parable tests of parallel trends). The one- and two-stage estimators agree on the statistical
22All of the results presented in Table 2 are weighted by state×year populations size. As a practical

matter, when applying weights using the one-stage approach, it is necessary to use weighted regressions and
deviations in the covariates from their weighted means.

23I obtained these estimates using the Stata package did2s (Butts, 2021) to obtain standard errors that
reflect the first-stage estimation of the adjusted outcomes.
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significance of four of the five duration-specific treatment effects, although they do not al-

ways agree on the precise level of significance (also note that the one-stage standard errors

are not always smaller, though they tend to be). Both approaches lead to the same practical

conclusions about the effect of the treatment.

Columns (3) and (6) present placebo tests of parallel trends that redefine treatment

status to mean being four periods before the actual onset of the treatment. For the one-stage

approach, I implement these tests using the regression specification detailed in Section 4,

setting k = −3 (i.e., including four leads of treatment status, as well as interactions between

these leads and de-meaned cohort and time indicators in the regression). For the two-stage

approach, I implement these tests by estimating the first stage on a sample of observations

that are never treated or more than four periods away from adopting the treatment, then

including four leads of treatment status (in addition to the five lags) in the second-stage

regression. In this case, tests based on the one- and two-stage approaches agree on the level

of statistical significance for all of the placebo coefficients Dr, r < 1, although most of the

one-stage standard errors remain smaller than their two-stage counterparts. These placebo

tests also produce “collateral” estimates of the duration-specific treatment effects Dr, r ≥ 1

(which compare treated observations to a smaller control sample of untreated observations).

Here, the one- and two-stage approaches agree on the level of statistical significance of all

but one of the coefficients. Setting comparisons between the one- and two-stage estimators

aside, it is comforting that signs and significance levels of these collateral estimates agree with

the full-sample estimates presented in columns (2) and (5), and that the placebo estimates

presented in columns (3) and (6) generally agree with the alternative test of parallel trends

presented for the two-stage estimator in column (5).

6.2 Autor (2003)

To further illustrate the application of the one-stage approach, I apply it, along with the two-

stage estimator, to Autor’s (2003) analysis of exceptions to the employment-at-will doctrine
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on temporary employment. The key variables for this analysis are state×year-level log

employment in the temporary help services industry and time-varying indicators for whether

a state currently has an exception to the doctrine. Following Autor (2003), I limit the sample

to the period spanning 1979-1995. I also drop one state which reversed the treatment after

adopting it. After making these sample selections, a total of 34 states, organized into nine

treatment cohorts, adopt the treatment between 1980 and 1988.

I then estimate the effects of the exception using both the one- and two-stage approaches,

using cohort fixed effects and clustering the standard errors at the state level. The results

are presented in Table 3. The one- and two-stage estimates of the overall ATT are shown in

columns (1) and (4). The point estimates are, naturally, identical and, like Autor’s original

baseline estimate, they are also both statistically insignificant.24 In this case, the standard

error for the one-stage estimator is slightly larger than that for the two-stage estimator,

though they are very similar.

Columns (2) and (5) of Table 3 present estimates of the duration-specific effects of the

treatment (I only present estimates for the first ten post-treatment periods, although the

comparative results for longer durations are similar). As in the Cheng and Hoekstra (2013)

example, the one- and two-stage estimators both lead to the same practical conclusions

about the dynamic effects of the policy (in this case, that they are not statistically different

from zero). In this case, however, the one-stage standard errors remain slightly larger, and

the differences between the one- and two-stage standard errors are much smaller for earlier

durations.25 As in the previous application, column (5) also includes second-stage estimates
24Autor’s baseline estimate (in a model with no covariates) is .112 with a standard error of .099. He

later presents statistically significant estimates from models that include covariates and state-specific linear
trends. I do not estimate more complicated models here because my purpose is to compare the one- and
two-stage estimates.

25One potential reason why there is greater divergence between some of the one- and two-stage standard
errors in the Cheng and Hoekstra application than in the Autor application (and in the simulation results
from Section 5) is that the Cheng and Hoekstra data contain a relatively large number of small cohorts
(3/5 of the cohorts contain 2 or fewer states, compared to 4/9 for for the Autor data). Since the cluster-
robust variance estimator is based on the sums of residuals across all units in a state, while the inclusion of
cohort fixed effects means that all residuals in a cohort must sum to zero, these small cohort sizes increase
the likelihood of mechanical bias in the clustered variance estimates. Despite this, the one- and two-stage
estimators point to the same practical conclusions about the overall and dynamic effects of the treatment in
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of the coefficients on the leads of treatment (which should be zero under parallel trends).

Finally, columns (3) and (6) of the table present one- and two-stage estimates of four

periods of placebo effects (as well as ten periods of dynamic effects), i.e., after redefining the

treatment variable to equal one if the treatment begins fewer than four periods in the future.

To ensure that all states are observed prior to the beginning of their “placebo” treatment, I

drop cohorts that adopted the treatment prior to 1983. Once again, the one- and two-stage

estimates lead to the same conclusions (about parallel trends as well as the dynamic effects

of the treatment), though in this application the one-stage standard errors tend to be a bit

larger, and are more different from the corresponding two-stage standard errors than they

are for the overall ATT or for earlier duration-specific effects in columns (2) and (4).

7 Conclusion

The problems associated with traditional regression-based difference-in-differences and event-

study estimators have sparked the development of several alternative, robust estimators that

reliably identify average treatment effect measures, even when adoption is staggered and av-

erage treatment effects are heterogenous. While all of the recently devised alternative estima-

tors offer some robustness to treatment-effect heterogeneity under staggered adoption, some

also have characteristics that make them particularly well-suited for specific environments.

The one-stage regression approach to difference-in-difference and event-study analysis de-

veloped in this paper is motivated intuitively by analogy to matching and regression methods

for selection on observables. It is simple and easy to implement in any statistical package,

using only a single regression that extends the traditional two-way fixed effects specification.

It is also flexible, and can be extended to identify duration-, group- and time- specific aver-

age treatment effects, to test the plausibility of parallel trends, and to accommodate triple

difference-in-differences designs. Because it is also identical to the two-stage difference-in-

differences estimator (and its numerical equivalents), it enjoys many of the advantages of

both applications.
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that estimator. It is, inter alia, robust to the presence of staggered adoption and hetero-

geneous average treatment effects, efficient (in some circumstances), and readily able to

handle settings where parallel trends only holds conditional on time-varying covariates (and

when treatment effects depend arbitrarily on those covariates). On the other hand, the two-

stage approach is better-suited to models that include many unit fixed effects, and offers

a broader menu of options for testing whether parallel trends holds, while estimators that

produce intermediate estimates of cohort×period-specific treatment effects (such as those

developed in Callaway and Sant’Anna, 2021 and Wooldridge, 2025) allow researchers to use

those estimates to report any aggregate of them that they wish.

The one- and two-stage estimators perform similarly in simulation exercises and applied

examples, with both leading to the same practical conclusions. In a simulation setting, both

approaches to estimation result in rejection rates close to the theoretical target rates. In the

empirical examples, not only do the results from the one- and two-stage estimators point to

the same broad conclusions, they also exhibit a high degree of consistency: each methodology

offers multiple ways of estimating average treatment effects and testing the validity of parallel

trends, and the resulting estimates agree both within and across estimation approaches.

Appendix A: Large-sample properties of 2SDD

Proof of Proposition 1. Consistency. Redefine Xit to include time indicators, so that par-

allel trends implies

Yit − λi −X ′itδ = βDit + εit.

Taking deviations from untreated means eliminates the λi, so that the second stage of the

estimator can be expressed as

(Yit − Ȳ 0
i )− (Xit − X̄0

i )′δ = βDit − (εit − ε̄0i ),
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where Ȳ 0
i = [

∑T
t=1(1−Dit)Yit]/

∑T
t=1(1−Dit), and similarly for the elements of X̄0

i and the

error ε̄0i .26 Note that since εit = uit + (βit − β)Dit where Dit and Xit are strictly exogenous

with respect to uit in all untreated periods, those variables are also strictly exogenous with

respect to εit in those periods.27

Next, write the first-stage estimate of δ as
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0
itẌ
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where the second line follows by the weak law of large numbers and the assumption that the

inverse exists, and the third from the continuous mapping theorem and the strict exogeneity

of Xit. Thus, the first stage estimate of δ (which includes the time fixed effects and the

coefficients on the covariates) is consistent.

Next, write the second-stage estimate as
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26The foregoing argument can also be applied to a version of the estimator that uses cohort fixed effects by
absorbing cohort dummies into Xit, then writing the second stage of the estimator as Yit−X ′itδ = βDit +εit
(i.e., rather than expressing it in terms of deviations from untreated means).

27Also note that, since λ̂i = Ȳ 0
i − X̄0′

i δ̂, this form of the estimator is equivalent to regressing Yit− λ̂i−X ′i δ̂
on Dit.
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where the last line follows from the weak law of large numbers, the continuous mapping

theorem/Slutsky’s theorem (together with the consistency of the first stage), the assumption

that the inverse exists, and the exogeneity of Dit.28

Asymptotic normality. Consistency implies that

√
N(β̂2SDD − β) =

(
1

N

∑
i

∑
t

Dit

)−1 [√
N

N

∑
i

∑
t

Ditε̈
0
it +

(
1

N

∑
i

∑
t

DitẌ
0′

it

)
√
N(δ − δ̂)

]
d−→ N

(
0, A−10 B0A

−1
0

)
where A0 = E(

∑
tDtt) and

B0 = E

[∑
t

Dit(ε̈
0
it)

2

]
+ E

(∑
t

DitẌ
0′

it

)

E

(∑
t

(1−Dit)Ẍ
0
itẌ

0′

it

)−1
E

[∑
t

Ẍ0
itε̈

0
i (1−Dit)ε̈

0
i Ẍ

0′

it ]

]
E

(∑
t

(1−Dit)Ẍ
0
itẌ

0′

it

)−1

E

(∑
t

DitẌ
0
it

)
.

In the above, the convergence in distribution comes from a weak law of large numbers, a

central limit theorem, the continuous mapping theorem (for convergence in distribution), and

the fact that δ̂ is uncorrelated with Ditε̈
0
it because they are drawn from different samples.

28Note that the existence of the inverse implies that the number of treated units increases without bound
with N . For more detail on the last equality, recall that εit = uit + (βit − β)Dit, so ε̈0it = ü0it + (βit −
β)Dit and E (

∑
tDitε̈it) = E

(∑
tDitü

0
it +

∑
t(βit − β)Dit

)
. The first term is zero by the strict exogeneity

of Dit with respect to uit, while the second term equals
∑

tE(βitDit) − β
∑

tE(Dit) =
∑

tE(βitDit) −
(
∑

tE(βitDit)/
∑

tE(Dit))
∑

tE(Dit) = 0 (this is another way of expressing the idea that E◦[(βit−β)Dit] =
0 when the expectation is taken over all time periods).
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Appendix B: What TWFE “tries” to estimate

Without covariates, parallel trends implies that (after conditioning on cohort membership)

observed outcomes satisfy

Ycit = λc + γt +
C∑
c=1

T∑
t=1

βctDct + εcit,

where Dct is an indicator for whether members of cohort c are treated at time t and

E[εcit|c, t, (Dct)] = 0 (and βct = 0 for periods when cohort c is not yet treated). The

traditional TWFE DD specification is

Ycit = λc + γt + βTWFEDit + ucit.

Embedding this specification within the true model implied by parallel trends, the term∑
c

∑
t βctDct can be considered an omitted variable, while the “true” coefficient on Dit is

zero.

By the (population) Frisch-Waugh-Lovell theorem and the usual omitted-variable bias

formula, the population regression coefficient on Dit from the traditional specification can

be recovered as the coefficient from a population regression of
∑

c

∑
t βctDct on the residual

D̃it from a population regression of Dit on cohort and time indicators, or

Cov
(∑

c

∑
t βctDct, D̃it

)
V ar(D̃it)

=
∑
c

∑
t

βct
Cov(Dct, D̃it)

V ar(D̃it)
=
∑
c

∑
t

βctρct,

where ρct is the coefficient on Dit from a population regression of Dct on Dit and sets of

cohort and time indicators. As has been noted in the literature (see de Chaisemartin and

D’Haultfœuille, 2020; Borusyak, Jaravel and Spiess, 2021), one view of the problems asso-

ciated with the traditional TWFE specification is that, because of the inclusion of cohort

and time fixed effects, the ρct are not constrained to be positive (and hence TWFE does not
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identify a convex weighted average of cohort×time-average treatment effects).

This problem arises because the ρct represent population coefficients from linear models

of the probability of being treated as a member of cohort c at time t that are misspecified

because they include cohort and time fixed effects in addition to treatment status. If the fixed

effects were omitted from the regressions that produce these weights, the ρct would instead

correctly identify the population shares πct = P (Dct = 1|Dit = 1) of treated unit-times that

correspond to cohort c and time t, and the coefficient on treatment status from the TWFE

regression would identify
∑

c

∑
t βctπct, which is precisely the overall ATT β = E◦(βit|Dit =

1). In this sense, the overall ATT is what the traditional TWFE DD specification is “trying”

to estimate, and what the estimators discussed in this paper succeed in estimating after

overcoming the problems associated with the traditional approach.

Appendix C: Additional details on the large-sample prop-

erties of 1SDD

In this section, I present an alternative proof of the consistency of the estimator. Here, I

assume that the estimator is implemented using unit fixed effects, although I also provide

parenthetical justifications for the cohort fixed effects case as well.

The one-stage difference-in-difference regression estimate can alternatively be obtained

by (i) estimating separate regressions on samples of untreated and treated observations

Yit = λdi +X ′itδ
d + udit, d ∈ {0, 1}, (6)

where the time fixed effects γdt have been absorbed into the covariates Xit, (ii) forming the

differences βi = λ1i − λ0i and βx = δ1 − δ0, and (iii) calculating the average effect of the
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treatment on the treated as29

1∑
i

∑
tDit

(∑
i

∑
t

Ditβ̂i +
∑
i

∑
t

DitX
′
itβ̂x

)
.

Moreover, each of the treatment-status-specific regressions (6) can be estimated using a

within transformation, and the unit fixed effects recovered as

λ̂di = Ȳ d
i − X̄d′

i δ̂
d,

where Ȳ d
i = [

∑
t Yit1(Dit = d)]/[

∑
t 1(Dit = d)] (and similarly for the vector X̄d

i ).

Since βi = λ1i − λ0i where E(λ̂d) = E(Ȳ d
i ) − E(X̄d

i )′δd, a law of large numbers and the

continuous mapping theorem give30

β̂1SDD =
1∑

i

∑
tDit

[∑
i

(∑
t

Ditβ̂i

)
+
∑
i

(∑
t

DitX
′
itβ̂x

)]

=
N∑

i

∑
tDit

[
1

N

∑
i

(∑
t

Dit[(Ȳ
1
i − X̄1′

i δ̂
d)− (Ȳ 0

i − X̄0′

i δ̂
0)]

)
+

1

N

∑
i

(∑
t

DitX
′
itβ̂x

)]
p−→ 1

E(
∑

tDit)
E

(∑
t

Ditβi +
∑
t

DitX
′
itβx

)

= E◦(βit|Dit = 1),

where the third line uses the fact that N−1
∑

iDit(Ȳ
d
i − X̄d

i
′δ)

p−→ E(Ȳ d
i − X̄d

i
′δ|Dit =

1)P (Dit = 1) = E(λi|Dit = 1)P (Dit = 1) = E(Ditλi).

29In the case of cohort fixed effects, this can also be expressed as
∑

j∈C w̄j β̂j + X̄1′ β̂x where w̄j is the
fraction of treated observations that correspond to cohort j and X̄1 is the vector of averages of the controls
(including time indicators) among all treated observations.

30In the case of cohort fixed effects, w̄j = [
∑

i

∑
tDit1(Ci = j)]/(

∑
i

∑
tDit)

p−→ E[
∑

tDt1(Ci =

j)]/E(
∑

tDt) ≡ πj and X̄1 = (
∑∑

tDitXit)/(
∑

i

∑
tDit)

p−→ E(
∑

tDitXit)/E(
∑

tDit), so that β̂1SDD =∑
j w̄j β̂j + X̄1β̂x

p−→
∑

j πjβj + E(
∑

tDitX
′
itβx)/E(

∑
tDit).
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Table 2: Empirical example (Cheng and Hoekstra, 2013)

One stage Two stage

(1) (2) (3) (4) (5) (6)

Overall ATT D 0.0901*** 0.0901**
(0.0332) (0.0412)

Dynamic effects D1 0.102*** 0.101** 0.102*** 0.101**
(0.0297) (0.0417) (0.0355) (0.0463)

D2 0.0754** 0.0725* 0.0754* 0.0725
(0.0342) (0.0410) (0.0414) (0.0449)

D3 0.0853* 0.0655 0.0853 0.0655
(0.0446) (0.0528) (0.0557) (0.0583)

D4 0.0771 0.0459 0.0771 0.0459
(0.0509) (0.0594) (0.0599) (0.0626)

D5 0.193*** 0.133** 0.193*** 0.133***
(0.0556) (0.0547) (0.0533) (0.0512)

Placebo effects D0 0.0192 0.0250 0.0192
(0.0409) (0.0239) (0.0468)

D−1 -0.0373 -0.0219 -0.0373
(0.0358) (0.0169) (0.0371)

D−2 -0.0229 -0.00113 -0.0229
(0.0345) (0.0146) (0.0315)

D−3 -0.0218 -0.00123 -0.0218
(0.0242) (0.0157) (0.0248)

D−4 0.00395
(0.0200)

D−5 0.00965
(0.0175)

D−6 0.0360**
(0.0173)

D−7 -0.0529
(0.0430)

D−8 -0.207***
(0.0436)

D−9 -0.189***
(0.0237)

N 550 550 550 550 550 550

Notes: Columns (1) and (4) are 1SDD and 2SDD overall ATT estimates, respectively.
Columns (2) and (5) contain the 1SDD and 2SDD estimates of the dynamic post-treatment
effects (column (5) also contains the default 2SDD placebo tests of parallel trends). Columns
(3) and (6) contain 1SDD and 2SDD placebo tests of parallel trends that assume the treat-
ment begins four periods before its actual adoption (i.e., pretends that D = 1 if r ≥ −3), as
well as the post-treatment dynamic effects implied by this placebo assumption. All estimates
control for police per capita, use cohort fixed effects, and cluster at the state level.
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Table 3: Empirical example (Autor, 2003)

One stage Two stage

(1) (2) (3) (4) (5) (6)

Overall ATT D 0.0628 0.0628
(0.175) (0.171)

Dynamic effects D1 0.0843 -0.0557 0.0843 -0.0557
(0.0680) (0.184) (0.0650) (0.170)

D2 0.0908 -0.0190 0.0908 -0.0190
(0.0879) (0.208) (0.0802) (0.187)

D3 0.144 0.0901 0.144 0.0901
(0.120) (0.239) (0.110) (0.219)

D4 0.0159 -0.0746 0.0159 -0.0746
(0.141) (0.270) (0.131) (0.245)

D5 0.0789 0.0278 0.0789 0.0278
(0.169) (0.293) (0.155) (0.264)

D6 0.123 0.128 0.123 0.128
(0.204) (0.324) (0.190) (0.294)

D7 0.0911 0.0633 0.0911 0.0633
(0.222) (0.343) (0.203) (0.310)

D8 0.0877 0.0564 0.0877 0.0564
(0.252) (0.362) (0.231) (0.326)

D9 0.0378 0.0467 0.0378 0.0467
(0.264) (0.372) (0.241) (0.335)

D10 -0.0730 -0.143 -0.0730 -0.143
(0.276) (0.417) (0.252) (0.373)

Placebo effects D0 -0.0889 -0.0254 -0.0889
(0.432) (0.0311) (0.394)

D−1 0.393 -0.0252 0.393
(0.516) (0.0291) (0.455)

D−2 -0.133 -0.0338 -0.133
(0.136) (0.0437) (0.125)

D−3 0.0145 0.0616 0.0145
(0.0801) (0.0391) (0.0813)

D−4 0.00181
(0.0553)

D−5 -0.0121
(0.0482)

D−6 0.0718*
(0.0435)

D−7 0.0983
(0.114)

D−8 -0.151
(0.157)

N 714 714 476 714 714 476

Notes: Columns (1) and (4) are 1SDD and 2SDD overall ATT estimates, respectively.
Columns (2) and (5) contain the 1SDD and 2SDD estimates of the dynamic post-treatment
effects (column (5) also contains the default 2SDD placebo tests of parallel trends). Columns
(3) and (6) contain 1SDD and 2SDD placebo tests of parallel trends that assume the treat-
ment begins four periods before its actual adoption (i.e., pretends that D = 1 if r ≥ −3), as
well as the post-treatment dynamic effects implied by this placebo assumption. All estimates
use cohort fixed effects, and cluster at the state level. Only the first ten post-treatment pe-
riods are shown (results for omitted periods are similar). Samples for columns (3) and (6)
exclude observations that do not have at least five pre-treatment periods.36
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