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Abstract

I develop a simple method of combining regression with difference-in-difference and
event-study designs to obtain treatment effect estimates that are robust to the pres-
ence of average treatment-effect heterogeneity under staggered rollout. The resulting
estimator, which can be viewed as a form of matching via regression adjustment, can
be obtained via a single regression, which automatically produces approximately valid
asymptotic standard errors. This one-stage estimator is numerically equivalent to the
two-stage difference-in-differences estimator developed in Gardner (2021) and Gardner,
Thakral, Tô, and Yap (2023), which is also the same as the estimators developed in
Borusyak, Jaravel and Spiess (2021) and Liu, Wang and Xu (2023), and therefore in-
herits the robustness (and other) properties of those estimators. The estimator can
also be extended to identify duration-specific and other treatment-effect measures and
implement placebo tests of parallel trends. I illustrate the properties and application
of this approach using simulations and an application from the literature.
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1 Introduction

It is now widely known that difference-in-differences and event-study estimates based on tra-

ditional two-way-fixed-effects regression specifications do not always identify sensible mea-

sures of average treatment effects when the adoption of a treatment is staggered over time and

duration-specific average treatment effects are heterogeneous across treatment cohorts (see

Borusyak, Jaravel and Spiess, 2021; de Chaisemartin and D’Haultfœuille, 2020; Goodman-

Bacon, 2022; Sun and Abraham, 2021). These observations have spawned a proliferation of

alternative estimators that are robust to the problems facing traditional regression specifi-

cations in the staggered and heterogeneous setting (see, e.g., Borusyak, Jaravel and Spiess,

2021; Callaway and Sant’Anna, 2021; de Chaisemartin and D’Haultfœuille, 2020; Dube,

Jordà and Taylor, 2023; Gardner, 2021; Gardner, Thakral, Tô, and Yap, 2023; Liu, Wang

and Xu, 2023; Sun and Abraham, 2021; Wooldridge, 2021).

In this paper, I develop a new approach to robust identification of average treatment

effects using difference-in-difference designs in this setting. A key advantage of this new

approach is that only requires the estimation of a single regression, which automatically pro-

duces approximately valid asymptotic standard errors. Moreover, this new approach does

not really add to the growing list of robust estimators. Instead, point estimates obtained us-

ing this approach are identical to those from the two-stage difference-in-differences estimator

developed in Gardner (2021) and discussed in greater detail in Gardner, Thakral, Tô, and

Yap (2023), which is also the same as the imputation estimator developed in Borusyak, Jar-

avel and Spiess (2021) and the fixed-effects counterfactual estimator developed in Liu, Wang

and Xu (2023). As a consequence, the one-stage estimator developed in this paper automat-

ically inherits the advantages of these estimators, including robustness to treatment effect

heterogeneity under staggered adoption, efficiency (under homoskedasticity, see Borusyak,

Jaravel and Spiess, 2021), the ability to control for time-varying covariates (that evolve ex-

ogeneously, see Caetano, Callaway, Payne and Rodrigues, 2022), and arbitrary dependence

of treatment effects on those covariates.
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This one-stage approach to estimation developed in this paper is flexible. In addition to

the overall average effect of the treatment on the treated, variations on the basic one-stage

regression specification can be used to identify other objects of interest, including dynamic

treatment effects, cohort- and time-specific average treatment effects, and coefficients that

represent placebo tests of parallel trends. Furthermore, since it ultimately amounts to esti-

mating a single regression (or perhaps a series of regressions), the one-stage approach is also

fast, and can be implemented by anyone using any standard statistical software package,

without the assistance of a specialized estimation routine.

The one-stage robust difference-in-differences regression approach can motivated intu-

itively by analogy to matching and regression methods for identification under selection on

observables. Abstracting away from covariates, if it were possible to observe the same unit

in the same time period in both treated and untreated states, the average effect of the treat-

ment on the the treated could be identified nonparametrically by matching treated units to

untreated versions of themselves in every time period. If, an addition, counterfactual mean

outcomes were linear in unit and time indicators, this matching could also be implemented

by estimating treatment-status-specific regressions of outcomes onto those indicators, then

averaging the differences between predicted treated and untreated outcomes over the treated

population. In fact, since these regressions would allow for extrapolation between units in

their treated and untreated states, this regression approach to matching could be imple-

mented even if individuals were never observed in both treatment states at the same time.

All difference-in-difference methods rely on some type of extrapolation under a parallel

trends assumption, using a combination of outcomes for contemporaneously untreated obser-

vations and past values of treated observations as counterfactuals for treated observations.

While parallel trends implies that untreated outcomes are linear in unit and time indicators,

arbitrarily heterogeneous treatment effects may not be. However, treated outcomes can al-

ways be decomposed into unit- and time-specific mean components, where the remaining

variation has mean zero. The average effect of the treatment on the treated is therefore
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identified from treatment-status-specific regressions of outcomes onto unit and time indica-

tors. As I show below, the averaging step of this identification procedure can be avoided by

judicious choice of regression specification, allowing the average effect of the treatment on

the treated to be identified from a single regression.

In Section 2, below, I outline the environment in which the one-stage regression-matching

difference-in-differences estimator developed in this paper applies. Because I formally estab-

lish the consistency of this estimator by showing its equivalence to the two-stage difference-

in-differences estimator, I also briefly review the properties of the latter estimator in that

section. Refining the intuition presented above, I develop the one-stage robust difference-in-

difference regression estimator in Section 3. There, I also I show that the regression-matching

estimator is equivalent to two-stage differences in differences, and introduce several useful

variations on the methodology. In Section 4, I present evidence on the performance of the

one-stage estimator using Monte Carlo simulations. In Section 5, I illustrate the use of the

estimator, and compare it to the two-stage estimator, in the context of an applied example

from the literature. I offer some concluding remarks in Section 6.

2 Setup, and review of the two-stage approach

Suppose that the data consist of observations on outcomes Yit, treatment status Dit ∈ {0, 1},

and a set of time-varying control variables Xit for i = 1, . . . , N units and t = 1, . . . , T time

periods. Further suppose that the treatment is irreversible and unanticipated.1

Let Ti ∈ {2, . . . , T,∞} be the date at which unit i adopts the treatment, and set Ti =∞

if i is always treated during that period (drop any observations that are always treated

during the sample period, since no treatment effects are identified for always-treated units).

Also define cohort dummies Cj
i = 1(Ti = j), j ∈ C = {2, . . . , T,∞}. Let (Y 0

it , Y
1
it ) be the

counterfactual untreated and treated outcomes that i would experience at time t, conditional
1It is possible to allow for potential anticipation by redefining Dit to be an indicator for whether unit i

adopts the treatment in k periods after t.
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on their observed membership in treatment cohort Ti. Let βit = Y 1
it−Y 0

it be the time-t causal

effect of the treatment for unit i, once again conditional on i’s observed treatment cohort. I

assume for simplicity that the data {Yit, Xit, C
j
i }, i = 1, . . . , N , t = 1, . . . , T , j ∈ C, consist

of a random panel, although all of the results in this paper also apply to repeated-cross-

sectional data.2 Finally, suppose that counterfactual outcomes follow parallel trends, in the

sense that they can be expressed as

Y d
it = λi + γt +X ′itδ + βitd+ uit, d ∈ {0, 1}, (1)

where E(uit|Dis, Xis,Wis) = 0 for all s ∈ {1, . . . , T}, and Wis is a vector of unit and time-

period indicators.

The two-stage difference-in-differences estimator is based on the implication of parallel

trends that

Yit − λi − γt −X ′itγ = βitDit + uit = βDit + (βit − β)Dit + uit ≡ βDit + εit,

where β = E(βit|Dit = 1) is the overall ATT (the population average treatment effect

over all time periods) and E[(βit − β)Dit|Dit] = DitE(βit|Dit) − βDit = 0. Thus, if λi,

γt, and δ were known, the overall ATT could be estimated from a regression of adjusted

outcomes Yit − λi − γt − X ′δ on treatment status Dit. Although they are not known, as

long as (i) there are untreated observations in every period, and (ii) there are pre-treatment

observations for every eventually-treated unit, λi, γt, and δ can be estimated from a regression

of outcomes on unit fixed effects, time fixed effects, and time-varying controls using the

sample of untreated observations (although this regression does not consistently estimate

the unit fixed effects, those effects can be eliminated by a variation on the usual within

transformation; see Appendix A).3 The two-stage difference-in-differences estimate β̂2SDD

2Since all of the estimands discussed in this paper are conditional on Dit = 1, causal effects for members
of the never-treated cohort can be normalized to zero without loss of generality.

3Since this regression is estimated on the sample of untreated observations, it is not subject to the biases
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of the overall ATT β is the estimated coefficient on treatment status from a regression of

Yit − λ̂i − γ̂t −X ′itδ̂ on Dit, where λ̂i, γ̂t, δ̂ are estimates of those parameters obtained from

a first-stage regression of Yit on Wit and Xit in the sample of untreated observations.

Proposition 1. Suppose that (i) E
[∑

t(1−Dit)Ẍ
0
itẌ

0′
it

]
is invertible, where Ẍ0

it denote the

vector of deviations in the covariates from their means among all untreated observations,

and (ii) E (
∑

tDit) 6= 0. Then under parallel trends, β̂2SDD p−→ β and
√
N(β̂2SDD − β)

a∼

N
(
0, A−10 B0A

−1
0

)
, where A0 and B0 are defined in Appendix A.

The proof is given in Appendix A.4

3 A robust one-stage regression approach

3.1 Motivation

The motivation for the estimator that I develop in this paper comes from the literature on

matching and selection on observables. If counterfactual outcomes (Y0, Y1) are independent

of treatment status D ∈ {0, 1} conditional on a set X of covariates, then the conditional

counterfactual mean outcome functions E(Yd|X = x), d ∈ {0, 1}, can be estimated from

separate regressions of outcomes on covariates for the treated and untreated samples, or

from a pooled regression of outcomes on the covariates and their interaction with treatment

status:

Y = X ′δ0 +D ·X ′δ1 + q, (2)

where E(q|X,D) = 0. If the counterfactual mean outcome functions are indeed linear in

the covariates, then they are identified by these regressions, and the Average Effect of the

associated with two-way fixed-effects models.
4Butts and Gardner (2022) and Gardner, Thakral, Tô, and Yap (2023) derive the asymptotic distribution

of the estimator (for the dummy-variable and within-transformation cases, respectively) by treating the first-
and second-stages as a joint GMM estimator (see the online appendix to Gardner, Thakral, Tô, and Yap
(2023) for a proof that these are equivalent. I provide an alternative, direct proof in Appendix A.

5



Treatment on the Treated (ATT) can be estimated as the sample analog of

ATT = E[E(Y1|X = x)− E(Y0|X = x)|D = 1] = E(X|D = 1)′δ1.

The second, aggregation step of this procedure can be avoided by replacing the regression

specification (2) with

Y = X ′ρ0 +D[X − E(X|D = 1)]′ρ1 + βD + r. (3)

In this case, the ATT can be estimated as the sample analog of

ATT = β + E[X − E(X|D = 1)|D = 1]′ρ1 = β,

after replacing E(X|D = 1) with its sample analog X̄1 =
∑

iDiXi/(
∑

iDi).5 This modified

approach has at least two practical advantages. First, it may be easier to obtain the treated

means X̄1 than to aggregate the covariate-specific ATTs. Second, regression estimates of

specification (3) will automatically produce asymptotic standard errors for the ATT, which

can be used for hypothesis testing and other statistical inference (as Wooldridge, 2010, notes,

the standard errors should technically account for the estimation of X̄1, although this unlikely

to make much of a difference).

The traditional difference-in-differences estimator regresses outcomes on unit (or treatment-

cohort) and time fixed effects, or equivalently, unit and time indicators (abstracting away

from any other potential control variables). The nexus between the regression-adjustment

matching approach described above and difference-in-differences estimation comes from pre-

tending that these indicators are true covariates (i.e., that they are quasiexperimentally

manipulable). If this were the case, the overall average effect of the treatment could be

identified by matching observations for treated and untreated units belonging to the same
5To the best of my knowledge, this observation is due to Wooldridge (2010, Ch. 21).
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unit and recorded in the same period.

Extending the regression-adjustment approach to differences in differences presents two

challenges. The first is that treated units can never be matched to untreated versions of

themselves in the same period. All difference-in-differences methodologies circumvent the

impossibility of this thought experiment under a parallel trends assumption, which allows the

evolution of outcomes for untreated units to be used in place of the counterfactual evolution

of untreated outcomes for treated units. While this kind of extrapolation between units

may be suspect in the general context of selection on observables, in difference-in-differences

designs it is actually desirable.

The second challenge is that, while parallel trends implies that untreated mean outcomes

are linear in unit and time indicators, in the presence of arbitrary heterogeneity, treated

outcomes will be nonlinear in those variables if treatment effects vary at the unit×time level.

If the covariates Wit consist of a full set of unit indicators, T − 1 relative time indicators,

and time-varying controls Xit, parallel trends implies that untreated outcomes satisfy

E(Y 0
it |Wit) = λi + γt +X ′itδ ≡ W ′

itρ0,

while treated outcomes satisfy

E(Y 1
it |Wit) = λi + γt +X ′itδ + βit ≡ W ′

itρ0 + βit.

Although the latter expression is nonlinear in the covariates, a closer look at the regression-

adjustment approach reveals that what it really requires is that counterfactual outcomes are

linear on average across the treated population. To see that the logic of this approach carries

over to the case of differences in differences, express βit in terms of its projection onto unit

and time indicators (and time-varying controls) as

βit = βi + βt +X ′itβx + (βit − βi − βt −X ′itβx) ≡ βi + βt +X ′itβx + β̃it = W ′
itρ1 + β̃it,
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where, by definition, E(β̃it|Dit = 1) = 0 (with the expectation taken across all time periods).

Using this decomposition, we have that6

E[(Y 1
it − Y 0

it |Wit)|Dit = 1] = E(βi + βt +X ′itβx|Dit = 1) = E(Wit|Dit = 1)′ρ1.

Thus, the overall ATT β can be estimated as W̄ 1′ ρ̂1, where W̄ 1 = (
∑

itDitWit)/
∑

itDit

is the average of the covariates among treated observations and ρ̂1 is the estimated pooled

least-squares regression coefficient vector on DitWit from the specification

Yit = W ′
itρ0 +DitW

′
itρ1 + sit.

Moreover, the aggregation step (calculating W̄ 1′ ρ̂1) of this procedure is obviated by using

the alternative specification

Yit = W ′
itρ0 +Dit(Wit − W̄ 1) + βDit + rit, (4)

from which β represents the overall ATT. Intuitively, including Dit forces the unit effects

to measure deviations from a reference unit, while demeaning Wit forces this unit to be the

overall average.7

In other words, the overall ATT can be estimated as the coefficient on treatment status

from a regression of outcomes on

(i) unit and and time-period indicators, as well as any time-varying control variables,

(ii) interactions between treatment status and deviations in unit indicators, time indica-
6Note that expressions of the form E(Zit|Dit = 1) implicitly treat Zit as a single random variable

whose distribution varies across time, implying that E(Zit|Dit = 1) = E(
∑

t ZitDit)/E(
∑

tDit) [this follows
because E(Z|D = 1) = E(ZD)/E(D), where E(ZD) =

∑
tE(ZD|t)/T , and similarly for E(D)], which

is also the probability limit of Z̄1 = (
∑

i

∑
t ZitDit)/(

∑
i

∑
tDit) under panel or repeated-cross section

random sampling. Alternatively, we could define the estimand of interest to be E[
∑

t(Y
1
it −Y 0

it)]/E(
∑

tDit).
I prefer the former approach since it makes clear the connection between the overall ATT and the ATT in
the cross-sectional case, although both lead to the same estimator.

7This requires dropping one of the unit indicators from Wit to avoid introducing perfect collinearity,
although most statistical packages will handle this automatically.
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tors, and time-varying controls from their means among treated observations, and

(iii) treatment status.

3.2 Properties

When there are no control covariates, or those covariates only vary at the level of treatment-

cohort×time, the Frisch-Waugh-Lovell theorem implies that unit indicators can be replaced

with cohort indicators in specification (4) without changing the resulting estimates. In this

case, it is easy to see that the one-stage robust difference-in-differences regression estimator is

consistent for the overall ATT: under these conditions, since E(Yit|Wit) = W ′
itρ0 +Dit[Wit−

E(Wit|Dit = 1)]′ρ1 + βDit, and the vector W̄ 1 of average cohort indicators, time indicators,

and controls among the treated converges to its population analog E(Wit|Dit = 1) by a law

of large numbers, β̂1SDD is consistent by an application of the continuous mapping theorem

and standard pooled OLS arguments.8

In the general case, the consistency and asymptotic distribution of the one-stage estimator

can be established by the following result.

Proposition 2. The one-stage robust difference-in-differences regression estimator is nu-

merically equivalent to the two-stage difference-in-differences estimator: β̂1SDD = β̂2SDD.

Proof. Let λ̂0i , i = 1, . . . .N , γ̂0t , t = 1, . . . , T , and δ̂0 denote the estimated unit fixed effects,

time fixed effects, and coefficients on time-varying controls from a first-stage regression of

outcomes on those variables, obtained from the sample of untreated observations. The

two stage difference-in-differences estimator is the coefficient on Dit from a second-stage

regression of Yit−λ̂0i−γ̂0t −X ′itδ̂0 on Dit (with no constant term). Since Dit and Dit(Wit−W̄ 1)

are orthogonal, the term Dit(Wit−W̄ 1) can be added to the second-stage regression without
8Alternatively, one can appeal to general consistency results for two-stage estimators (see Newey and Mc-

Fadden, 1994; Wooldridge, 2010, chapter 12). Identification for pooled OLS also requires that E (
∑

tQitQ
′
it)

is invertible, where Qit = [Wit, Dit(Wit−W̄ 1), Dit] is the vector of observations on all covariates for unit i at
time t, which in turn requires that the number of untreated units in every period and the number of treated
observations grow without bound with N (this is analogous to the identification requirements for two-stage
differences in differences).
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changing the estimated coefficient on Dit. Now, if λ̂0i , λ̂0t , and δ̂0 were the same as the

estimated unit effects, time effects, and control coefficients λ̂1SDD
i , λ̂1SDD

t , and δ̂1SDD from

the one-stage regression specification of Yit onWit, Dit(Wit−W̄it), andDit, then the estimated

coefficient β̂1SDD on Dit from the one-stage specification would be identical to β̂2SDD (this

is an exercise in partitioned regression mechanics; see, for example, Greene, 2018, Ch. 3) .

By the Frisch-Waugh-Lovell theorem, λ̂1SDD
i , λ̂1SDD

t , and δ̂1SDD can be obtained from

a regression of Yit on the residuals from auxiliary regressions of the elements of Wit on

Dit and Dit(Wit − W̄ )1. However, since Dit and Dit(Wit − W̄ ) perfectly predict Wit for

treated observations (if Dit = 1, we can always write the kth element of Wit as Wkit =

Dit(Wkit− W̄k) + W̄kDit), these residuals will be zero for all treated observations. Therefore,

λ̂1SDD
i , λ̂1SDD

t , and δ̂1SDD can also be obtained by regressing Yit on Wit in the sample of

untreated observations. That is, λ̂1SDD
i , λ̂1SDD

t , and δ̂1SDD equal λ̂0i , λ̂0t , and δ̂0.

Thus, the one-stage robust regression estimator is identical to the two-stage difference-

in-differences estimator, and the consistency of the former follows formally from that of

the latter. The implication of Proposition 2 is that the one-stage approach is another way

of obtaining two-stage difference-in-differences estimates. The primary advantage of the

one-stage approach is that regression estimates of specification (4) automatically produce

standard error estimates that do not need to be adjusted to account for the first-stage

estimation of the fixed effects and control coefficients (as Wooldridge, 2010, Ch. 21, notes,

the standard errors should technically be adjusted for the use of W̄ 1 in place of E(W |D = 1),

although this likely has a small effect on the resulting standard errors). Thus, the estimator

can easily be implemented in any statistical package, without any specialized estimation

routine.

3.3 Averaging and aggregated specifications

An apparent drawback of the one-stage robust approach is that, when the control covariates

vary at the individual level, it may require the inclusion of a large number of regressors (in-
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teractions between treatment status and the deviations of unit indicators from their averages

among treated observations), which may be computationally impractical when the number

of units is large.9 In many applications, this will not be a binding constraint. A typical

use of difference-in-difference analysis is to examine the effect of a policy change across, say,

50 US states. If the outcome variable is measured at an aggregate level (e.g., a state-level

average or count), the one-stage approach will easily be computationally tractable. Since, in

microdata settings, treatment status usually varies at more coarse a level than the outcome

variable, treatment effects can often be estimated without controlling for individual fixed

effects. For example, if the data consist of individuals grouped into states s, then taking

expectations conditional on s and time in expression (1) for parallel trends gives

E(Y d
it |s, t) = E(λi|s) + γt + E(Xit|s, t)′δ + E(βit|s, t)Dst + E(uit|s, t)

≡ λs + γt + E(Xit|s, t)′δ + βstDst + ust,

where Dst is an indicator for whether members of state s are treated in period t. Thus, the

identification argument underlying the one-stage approach can be applied to state×time-level

means in order to identify the overall ATT β after replacing E(Yit|s, t) and E(Xit|s, t) with

their sample analogs Ȳst and X̄st. Moreover, since a regression of Ȳst on state indicators, time

indicators, state×time-average controls X̄st and the interaction between state-level treatment

status Dst and the deviations of those variables from their treated means, it is only necessary

to aggregate the individual-level controls to the state×time level. In other words, the robust

one-stage procedure can amended by replacing unit fixed effects with state fixed effects and

individual×time-level controls with state×time-average controls.
9The unit effects themselves (i.e., those that are not converted to deviations from treated means and

interacted with treatment status) can be removed using a within transformation, although in many practical
cases even this is unnecessary.
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3.4 Extensions

Difference-in-differences analyses are usually accompanied by event-study estimates that

indicate the dynamic path of the treatment over time and placebo tests for the plausibility

of parallel trends. Let Dr
it = 1(t − Ti = r + 1) for r ∈ {−(T − 2), . . . 0, 1, . . . , T − 1} be

r+1-period leads (for r ≤ 0) or r-period lags (for r ≥ 1) of treatment status. Also let Y 1r
it be

the counterfactual effect that i would experience at time t after being treated for r periods

(holding cohort membership fixed at its observed value), and define βr = E(Y 1r
it − Y 0

it |Dr
it =

1).

First, consider the case where r ≥ 1. Under the two-stage difference-in-differences

methodology, regressing adjusted outcomes Yit − λ̂i − γ̂t on the Dr
it, r ≥ 0, produces es-

timates of the average effect of being treated for r periods (on units treated for r periods).

The one-stage robust estimator can be adapted to incorporate these dynamic estimands by

replacing treatment status Dit with a set of r-period treatment status indicators Dr
it, r ≥ 1.

Following the logic of Section 3.1, under parallel trends

Yit = W ′
itρ0 +

∑
r≥1

{Dr
it[Wit − E(Wit|Dr

it = 1)]′ρ1 + βrDr
it}+ vit, (5)

so that

E[E(Y 1r
it |Wit)− E(Y 0

it |Wit)|Dr
it = 1] = βr + E[Wit − E(Wit|Dr

it = 1)|Dr
it = 1]′ρ1 = βr,

and hence βr can estimated consistently as the coefficient on Dr
it from a feasible version of

(5) that regresses outcomes on Wit, Dr
it(Wit− W̄ 1r), and Dr

it, for all r ≥ 1, where W̄ 1r is the

vector of average covariates among units treated for r units.

To establish the consistency of the dynamic effects, first note that since the Dr
it are

mutually orthogonal, the two-stage estimates of βr can be obtained from a version of the

two-stage procedure for the overall ATT that replaces Dit in the second stage equation
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with Dr
it (but still estimates the first stage using the subsample of untreated observations).

Similarly, the coefficient on Dr
it from the dynamic one-stage regression specification (i.e., the

sample analog of (5)) is identical to the coefficient that would obtain from first subsetting the

data to contain only observations on untreated units and those treated for exactly r periods,

then estimating a version of the one-stage specification (4) for the overall ATT that replaces

overall treatment status Dit with r-period treatment status Dr
it. Hence, the consistency

of the one-stage dynamic-effect estimates follows from the consistency of the overall ATT

estimates.

Placebo testing for parallel trends with the one-stage approach works slightly differently.

Choose some pre-treatment period k ≤ 0, and consider a feasible version of (5) (i.e., replacing

E(Wit|D1r
it = 1) with W̄ 1r) that sums over all r ≥ k (rather than over all r ≥ 1), for some

k ≤ 0. By the preceding argument, this specification is equivalent to estimating the dynamic

specification after redefining the onset of the treatment as being k+1 periods before its actual

onset. Consequently, the estimated coefficients on Dr, r ∈ {k, . . . , 0}, represent consistent

estimates of k + 1 pre-treatment placebo ATTs, which can be used to test the plausibility

of parallel trends (under which these pre-treatment ATTs should be zero). The consistency

of these estimates follows from the preceding discussion, which implies that this procedure

is equivalent to estimating dynamic treatment effects by two-stage differences in differences,

after redefining treatment status as being k+1 periods before the adoption of the treatment.10

The estimated coefficients on Dr, r ≥ 1, from a version of specification (5) that sums over

all r ≥ k represent consistent estimates of the r-period post-treatment ATTs βr. However,

because this specification only uses observations that are more than k periods away from

the actual onset of the treatment as the untreated sample, estimates of βr, r ≥ 1, from

this specification will differ from those based on a version of (5) that only sums over r ≥ 1.

The dynamic ATT estimates βr obtained from the original specification may therefore be
10This is one of several approaches to testing parallel trends using two-stage differences in differences. For

other approaches, see Gardner, Thakral, Tô, and Yap (2023), Borusyak, Jaravel and Spiess (2021) and Liu,
Wang and Xu (2023).
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preferable when the data are consistent with parallel trends, since those estimates compare

the same treated observations to a larger sample of untreated observations.

To summarize, the dynamic and placebo effects of the treatment are identified from

regressions of outcomes on

(i) unit and time indicators and control variables, collected into the vector of covariates

Wit,

(ii) interactions Dr
itWit between these covariates and duration-specific treatment-status

indicators Dr
it, for all r ≥ k and some k ≤ 0, and

(iii) duration-specific treatment status indicators Dr, for all r ≥ k and some k ≤ 0.

The coefficients on Dr represent r-period ATTs for r ≥ 1 and placebo tests of parallel trends

for r ≤ 0 (to estimate the dynamic ATTs using as many observations as possible, set k = 1).

Difference-in-differences analyses sometimes also include estimates of cohort-specific ATTs

βj = E(Y 1
it − Y 0

it |Dit = 1, Cj
i = 1), c ∈ C. These ATTs are easy to estimate using the robust

one-stage approach: simply replace Dit and Dit(Wit−W̄ 1) with DitC
j
i and DitCit(Wit−W̄ 1j),

j ∈ C, where W̄ 1j is the average of the covariates among treated observations corresponding

to cohort j. These cohort-specific ATTs can also be averaged (perhaps weighting by relative

cohort sizes) using commands available in standard software.11 An analogous variation on

the one-stage approach can be used to estimate calendar-time specific average treatment

effects.

4 Simulations

4.1 Rejection rates

In order to illustrate the properties of the robust one-stage estimator, I present results from

a number of Monte Carlo simulations. To begin, I present rejection rates from a series of
11For example, using Stata’s lincom command.
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simulations in which the treatment has no effect, so that

Y 1
it = Y 0

it = λi + γt + εit,

where λi ∼ N(Ti, 1), γt ∼ N(0, 1), and εit ∼ N(0, 3). For each of these simulations, T = 5,

no units are treated in the first period, and adoption times Ti are drawn from a discrete

uniform distribution with support {2, . . . , 6} (units with Ti = 6 are never treated). In each

simulated dataset, I estimate the effect of the treatment using both two-stage difference in

differences and one-stage robust differences in differences, each with standard errors clustered

at the individual level.12 For each variation on the simulation exercise, I report results from

1,000 simulated datasets.

The top left panel of Table 1 summarizes the results from estimates that include individual

(i.e., unit) fixed effects in simulations in which all variables are re-drawn in each simulated

dataset. In this setting, tests based on both the one- and two-stage estimators have a

slight tendency to over-reject (at the 5% level) in smaller samples, although this tendency is

greater for the one-stage estimator and for estimates of treatment effects that occur longer

after the treatment is adopted (this latter tendency spills over, affecting the rejection rate

for the overall ATT). As the sample size increases from 50 to 100 to 500 units, the two-stage

rejection rate decreases to the appropriate .05, while the one-stage rate remains slightly

above this level at .066.13 The greater tendency of the one-stage estimator to over-reject

has less to do with the one-stage approach itself and more to do with the performance of

the cluster-robust variance estimator in the presence of many fixed effects.14 As evidence of
12I obtained the 2SDD estimates using Kyle Butts’ Stata package did2s (Butts, 2021).
13In samples of 500, I only estimate the overall ATT for models that include unit fixed effects, since the

one-stage specification for duration-specific ATTs includes over 2,000 covariates.
14More specifically, the issue arises because the unit-specific sums of the residuals from a model that

includes unit fixed effects must be zero, but these sums are a component of the cluster-robust estimate
of the variance of those fixed effects. To see this, note that (as I discuss in Appendix B), the one-stage
estimator can also be obtained by estimating treatment-status-specific regressions of outcomes on unit and
time fixed effects, taking treated-untreated differences in those effects, then averaging the sum of differential
unit and time effects over the treated sample. From the OLS first-order conditions, the estimated unit
fixed effects are (ignoring treatment status for the sake of simplicity) λ̂i = Ȳi − X̄ ′

i δ̂, where δ̂ includes the
coefficients on the time effects (as well as any other covariates). Hence, the conditional variance of λ̂i is
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this, the top right panel of the table summarizes results from a reprise of these simulations

in which treatment status and the unit and time fixed effects are fixed across simulated

datasets (only the error term is re-drawn in every dataset), so that the terms W̄ 1 that

appear in the one-stage specification are equal to their population analogues. In this case,

both the one- and two-stage estimators have slightly larger tendencies to over-reject than in

the random case (at least with respect to the overall ATT; the one-stage estimator appears

to perform better for some of the duration-specific ATTs). However, the one-stage estimator

still over-rejects more frequently than its two-stage counterpart, and its rate of over-rejection

diminishes more slowly as the sample size grows.15

The bottom panels of the Table 1 repeat these simulations, replacing unit fixed effects

with treatment-cohort fixed effects (recall that in this case with no covariates, replacing

unit with cohort fixed effects does not affect the point estimates for either method). Here,

regardless of the nature of the simulations, the performance of the one-stage estimator is

much closer to, and in some cases better than, that of the two-stage estimator. In particular,

when the sample size increases to 500, tests based on either estimator achieve the desired size.

The relative performance of the one-stage estimator, and how that performances changes

when replacing unit with cohort fixed effects or using a homoskedastic variance estimator,

suggests that while tests based on the one-stage estimator and its standard errors may over-

reject slightly more than their two-stage counterparts, this over-rejection is not driven by

the one-stage estimator’s use of estimated treated-sample means, and is unlikely to be much

different than those for other regressions that include a large number of fixed effects.

The final row of Table 1 illustrates another numerical equivalence with the one-stage

regression approach. The results in the row labelled “manual” report the simulated results

V ar(ε̄i|X)− X̄ ′
iV ar(δ̂|X)X̄i. Under clustering at any level more coarse than the unit, the natural estimate

of the first component (and as a tedious calculation shows, the actual estimate) is (
∑

t eit)
2
/T 2, which is zero

by the first-order conditions for OLS, underestimating the variance of the unit effect (and, in the one-stage
differences in differences context, the estimated ATT).

15As further evidence that the greater tendency of the one-stage estimator to over-reject is due to the
cluster-robust variance estimator (rather than the use of estimated W̄ 1), when I repeat these simulations
using a homoskedastic standard error estimator, the rejection rates are .057, .055, and .048 for samples of
size 50, 100, and 500.
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from regressing outcomes on unit and time indicators (collected into the vector Wit) and the

interactions DitWit between these variables and treatment status (i.e., without demeaning

relative the treated sample), then estimating the overall ATT as the average product W̄ 1ρ̂1

of the interaction terms with their coefficients among the treated sample (and calculating

delta-method standard errors for this average). The resulting point estimates and standard

errors, and hence rejection rates, are identical to those obtained from the one-stage regression

specification.

4.2 Aggregation

The discussion in Section 3.3 shows how the one-stage estimator can be applied with averaged

covariates and group fixed effects, or to aggregated data, in order to apply the procedure

with fewer regressors. Table 2 presents a second series of simulations designed to illustrate

the properties of the one- and two-stage estimators in the presence of covariates and under

various forms of aggregation. Here, as in the previous simulations, T = 5 and the time

Ti of treatment adoption is distributed uniformly over periods 2 through 6, where Ti = 6

represents never-treated units. For this simulation exercise, each simulated dataset consists

of 500 units organized into 50 “states.” In the simulations described below, all variables are

re-drawn for every simulated dataset.

For each simulation exercise and simulated dataset, I estimate a number of variations

on the one- and two-stage specifications. In Table 2, the row labelled “2SDD” reports the

average over 1,000 simulated datasets of two-stage estimates that use treatment-cohort fixed

effects and control for the individual-level covariate Xit. The row labelled “2SDD, avg. X”

reports the results from a variant of 2SDD that uses cohort fixed effects, but replaces the

individual covariate Xit with the state×time average X̄st. The row labelled “2SDD, avg.”

reports the results from two-stage estimates applied to data that have been aggregated to

the state×time-level (i.e., using cohort fixed effects and replacing both Yit and Xit with their

state-average counterparts). Similarly, the row labelled “1SDD” reports results from a variant
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of the one-stage specification that uses cohort fixed effects and controls for the individual-

level covariate.16 The row labelled “1SDD, avg. X” reports results that are estimated on

the individual microdata using a model with cohort fixed effects and state×time-average

covariates. The row labelled “1SDD, avg.” reports results from the one-stage specification

applied to state×time aggregate data (that is, using cohort fixed effects and state×time-

averaged outcomes and covariates). The final row summarizes the average true ATT.

In all of the simulations, outcomes are determined by

Yit = λi + γt + δXit + βitDit + εit,

where λi, γt, and εit are drawn as in the previous simulations. In simulation (1), Xit ∼ N(1, 1)

and the treatment effect βit ∼ N(2, 1) is independent of the covariate. As the results show,

all of the variants of the one- and two-stage estimates covariates similar point estimates

and rejection rates.17 In simulation (2), Xit ∼ N(1, 1) as before, but the treatment effect

depends on Xit according to βit = t − Ti + 1 + Xit/4. Here, again, all variants of both the

one- and two-stage estimates are similar to each other and to the average true ATT. In this

case, 2SDD tends to under-reject at the 5% level, while 1SDD has a (somewhat smaller)

tendency to over-reject, this tendency being less pronounced when the procedure is applied

to state×year averaged data.18 In simulation (3), the covariates themselves are correlated

with the unit fixed effects, being drawn according to Xit ∼ N(λi/25, 1), and the treatment

effect depends on Xit according to βit = (t − Ti + 1)Xit/4.19 Illustrating the numerical
16Using state fixed effects in these models would lead to the variance underestimation issue described

above (see footnote 14). One purpose of these simulations is to show that models with cohort, rather than
state or individual, fixed effects can still produce consistent ATT estimates.

17Although it is difficult to show without reporting results to a ridiculous level of numerical procedure,
the one- and two-stage results that using individual covariates are numerically identical, as are the results
from all of variants of the one- and two-stage procedures that use state-averaged covariates.

18Part of the difference in rejection rates for 1SDD applied to micro and aggregate data can be explained
by the fact that the finite-sample adjustment that Stata applied, which is proportional to (N − 1)/(N −K)
(where K is the number of regressors), is more influential for the aggregated estimates.

19When observations are grouped into coarser units such as cohorts (or states), parallel trends as defined
in (1) can always be re-expressed as

Yit = λc + γt +X ′
itδ + βitDit + (λi − λc) + εit.
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equivalencies, the pattern is the same as before: all variants of the one-stage estimator are

identical to their two-stage equivalents, and all are close to the average true ATT. Here,

all procedures tend to over-reject, although this tendency is slightly larger for the one-stage

approach applied to microdata. Finally, simulation (4) is identical to simulation (3), with

the exception that the covariates are drawn as Xut ∼ N(Ti/6, 1), so that they are correlated

with cohort membership. The results are similar to those above: all variants are similar to

each other and the average true ATT, with rejection rates near the target of 5%, although

the one-stage estimates obtained using microdata have a marginally larger tendency to over

reject.

Overall, the results from these simulation exercises demonstrate that computationally

tractable variations on the robust one-stage specification can consistently estimate the effect

of the treatment, even in the presence of individual level covariates that influence the effect

of the treatment.

5 Empirical application

To illustrate the application of the one-stage estimator, I revisit Cheng and Hoekstra’s (2013)

analysis of the effects of strengthening Castle Doctrine, also known as “stand your ground”

laws, on violent crime. In this analysis, the key treatment status variable is an indicator

for whether a state has adopted a stand your ground law in a given state-year, and the

dependent variable is the treatment-cohort average of the log of the number of homicides

committed per 100,000 people in that year.

Table ?? compares the results from one- and two-stage difference-in-difference estimates

of the impact of these laws on homicides.20 All of the point estimates discussed in this

Consequently, if both treatment status and the covariates are uncorrelated with the differences λi − λc
between unit and cohort-average fixed effects, it is unnecessary to include unit fixed effects (and in many
applications, it is reasonable to assume that treatment status is only correlated with the cohort-average
effect). This simulation illustrates that using state×time-average covariates is valid even when the individual-
level covariates are correlated with the unit fixed effects.

20All of the results presented in Table ?? are weighted by state×year populations size. As a practical
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section are based on models that use cohort fixed effects, and all of the standard errors are

clustered at the state level. Columns (1) and (4) report one- and two-stage estimates of the

overall ATT. The point estimates are identical (for the reasons detailed above). The one-

stage estimate has an estimated standard error of about .028, implying statistical significance

at the 5% level, while the estimated standard error of the two-stage estimate is somewhat

larger, at about .035, but implying significance at the same level. Although it is unknown

which standard error provides a more accurate measure of the variation in the point estimate,

from a practical perspective, the results from tests based on these methods agree with each

other.21

Columns (2) and (5) present estimates of the dynamic effects of the treatment. The

one-stage estimates are derived from a regression of outcomes on cohort and time indi-

cators, duration-specific treatment status indicators Dr, r ∈ {1, . . . , 5}, and interactions

Dr(Wit − W̄ r) between duration-specific treatment status and deviations in the cohort and

time indicators from their duration-specific treated means. The two-stage estimates are based

on second-stage regressions of adjusted outcomes on the duration-specific treatment status

variables. I also include leads of treatment status in these second-stage regressions, the coef-

ficients on which represent tests of parallel trends, since the two-stage approach makes this

easy, and their inclusion does not affect the estimated coefficients on the duration-specific

treatment-status indicators (note that these placebo tests are notionally different from those

described in Section 3.4, which are implemented below).22 As before, the point estimates

are identical (note that the one-stage estimates reported in column (2) do not include com-

parable tests of parallel trends). The one- and two-stage approaches agree on the level of

significance for two of the five estimated ATTs; in the remaining cases, tests based on the

one-stage approach reject at a lower level of statistical significance. Both approaches lead to

matter, when applying weights using the one-stage approach, it is necessary to use weighted regressions and
deviations in the covariates from their weighted means.

21Although the simulation results in Table 1 suggest that the one-stage estimator is more likely to over-
reject, those simulations are based on homoskedastic and serially uncorrelated errors.

22I obtained these estimates using the Stata package did2s (Butts, 2021) to obtain standard errors that
reflect the first-stage estimation of the adjusted outcomes.
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the same practical conclusions about the effect of the treatment.

Columns (3) and (6) present placebo tests of parallel trends that redefine treatment

status to mean being four periods before the actual onset of the treatment. For the one-stage

approach, I implement these tests using the regression specification detailed in Section 3.4,

setting k = −3 (i.e., including four leads of treatment status, as well as interactions between

these leads and de-meaned cohort and time indicators in the regression). For the two-stage

approach, I implement these tests by estimating the first stage on a sample of observations

that are never treated or more than four periods away from adopting the treatment, then

including four leads of treatment status (in addition to the five lags) in the second-stage

regression. In this case, tests based on the one- and two-stage approaches agree on the level

of statistical significance for all of the placebo coefficients Dr, r ≤ 0, although in this case

most of the one-stage standard errors are larger than their two-stage counterparts. These

placebo tests also produce “collateral” estimates of the duration-specific treatment effects

Dr, r > 0 (which compare treated observations to a smaller control sample of untreated

observations). For these estimates, the one- and two-stage approaches agree on the level of

statistical significance of all of the coefficients, although most of the one-stage standard errors

are slightly smaller. Setting comparisons between the one- and two-stage estimators aside,

it is comforting that signs and significance levels of these “collateral” estimates agree with

the full-sample estimates presented in columns (2) and (5), and that the placebo estimates

presented in columns (3) and (6) generally agree with the alternative test of parallel trends

presented for the two-stage estimator in column (6).

6 Conclusion

The problems associated with traditional regression-based difference-in-differences and event-

study estimators have sparked the development of several alternative, robust estimators that

reliably identify average treatment effect measures, even when adoption is staggered and
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average treatment effects are heterogenous. In truth, there is no one “mother” estimator.

While all of the recently devised alternative estimators offer some robustness to treatment-

effect heterogeneity under staggered adoption, some also have characteristics that make them

particularly well-suited for specific environments.

The one-stage regression approach to difference-in-difference and event-study analysis

developed in this paper has several advantages. It is motivated intuitively by analogy to

matching and regression methods for selection on observables. It is simple and easy to

implement in any statistical package, using only a single regression. It is also flexible, and

can be extended to identify duration-, group- and time- specific average treatment effects,

as well as placebo tests for parallel trends. Because it is also identical to the two-stage

difference-in-differences estimator (and its numerical equivalents), it enjoys many of the

advantages of that estimator. It is, inter alia, robust to the presence of staggered adoption

and heterogeneous average treatment effects, efficient (in some circumstances), and readily

able to handle settings where parallel trends only holds conditional on time-varying covariates

(and when treatment effects depend arbitrarily on those covariates). On the other hand, the

two-stage approach is better-suited to models that include many unit fixed effects, offers

a broader menu of options for testing whether parallel trends holds, and may be easier to

adapt to some more complicated settings (triple differences in differences, to name one).

The one- and two-stage estimators perform similarly in simulation exercises and an ap-

plied example, with both leading to the same practical conclusions. In a simulation setting

with homoskedastic and serially uncorrelated errors and unit fixed effects, statistical tests

based on the one-stage estimator have a marginally higher tendency to over-reject than those

based on the two-stage estimator. However, this appears to be because of the performance

of the cluster-robust variance estimator itself, and is therefore unlikely to be much different

than what one would expect from other regression specifications that include many fixed ef-

fects. In any case, the tests are close to their intended sizes in larger samples (and of course

they can always be supplemented with bootstrap-based inference, which would also capture
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the uncertainty associated with using treated-sample means in the robust one-stage specifi-

cation). With cohort fixed effects, tests based on the one-stage approach perform similarly

to, and in some cases better than, their two-stage counterparts. In the empirical example,

not only do the results from the one- and two-stage estimators point to the same broad

conclusions, they also exhibit a high degree of consistency: each methodology offers multiple

ways of estimating average treatment effects and testing the validity of parallel trends, and

the resulting estimates agree both within and across estimation approaches.

Appendix A: Large-sample properties of 2SDD

Proof of Proposition 1. Consistency. Redefine Xit to include time indicators, so that par-

allel trends implies

Yit − λi −X ′itδ = βDit + εit.

Taking deviations from untreated means eliminates the λi, so that the second stage of the

estimator can be expressed as

(Yit − Ȳ 0
it )− (Xit − X̄0

it)
′δ = βDit − (εit − ε̄0it),

where Ȳ 0
i = [

∑T
t=1(1−Dit)Yit]/

∑
t(1−Dit), and similarly for the elements of X̄0

i . Note that

since εit = uit + (βit − β)Dit where Dit and Xit are strictly exogenous with respect to uit,

those variables are also strictly exogenous with respect to εit in all untreated periods.23

23Also note that this since λ̂i = Ȳ 0
i −X̄0′

i δ̂, this form of the estimator is equivalent to regressing Yit−λ̂i−X ′
i δ̂

on Dit.
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Next, write

δ̂ = δ +

(
1

N

∑
i

∑
t

(1−Dit)Ẍ
0
itẌ

0′

it

)−1(
1
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∑
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∑
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0
itε̈

0
it

)
p−→ δ + E
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0
itẌ

0′

it

)−1
E

(∑
t

(1−Dit)Ẍ
0
itε̈

0
it

)

= δ,

where the second line follows by the weak law of large numbers and the assumption that the

inverse exists, and the third from the continuous mapping theorem and the strict exogeneity

of Xit.24 Thus, the first stage estimates of δ (which includes the time fixed effects and the

coefficients on the covariates) are consistent.

Next, write the second-stage estimate as

β̂2SDD = β +
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∑
i

∑
t

Dit
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∑
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0′

it (δ − δ̂)]

)
p−→ β + E

(∑
t

Dit

)−1 [
E

(∑
t

Ditε̈
0
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)
+ E
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DitẌ
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it

)
·0

]
= β,

where the last line follows from the weak law of large numbers, the continuous mapping

theorem/Slutsky’s theorem, the assumption that the inverse exists, and the strict exogeneity

of Dit.25

24Note that the existence of the inverse implies that the size of the untreated group in every period increases
without bound with N .

25Note here that the existence of the inverse implies that the number of treated units increases without
bound with N .
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Asymptotic normality. Consistency implies that

√
N(β̂2SDD − β) =
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)−1 [√
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In the above, the convergence in distribution comes from a weak law of large numbers, a

central limit theorem, the continuous mapping theorem (for convergence in distribution), and

the fact that δ̂ is uncorrelated with Ditε̈
0
it because they are drawn from different samples.

Appendix B: Additional details on the large-sample prop-

erties of 1SDD

The one-stage difference-in-difference regression estimate can alternatively be obtained by

(i) estimating separate regressions on samples of untreated and treated observations

Yit = λdi +X ′itδ
d + udit, d ∈ {0, 1}, (6)

where the time fixed effects γdt have been absorbed into the covariates Xit, (ii) forming the

differences βi = λ1i − λ0i and βx = δ1 − δ0, and (iii) calculating the average effect of the
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treatment on the treated as26

1∑
i

∑
tDit

(∑
i

∑
t

Ditβ̂i +
∑
i

∑
t

DitX
′
itβ̂x

)
.

Moreover, each of the treatment-status-specific regressions (6) can be estimated using a

within transformation, and the unit fixed effects recovered as

λ̂di = Ȳ d
i − X̄d′

i δ̂
d,

where Ȳ d
i = [

∑
t Yit1(Dit = d)]/[

∑
t 1(Dit = d)] (and similarly for the vector X̄d

i ). Condi-

tional on Xi, the asymptotic variance of the estimated effects is Avar(λ̂di ) = Avar(Ȳ d
i ) −

X̄d′
i Avar(δ̂

d)X̄d
i , and, since V̂ ar(δ̂d|W ) = Âvar(δ̂d), estimates of these asymptotic variances

will be the same as the estimated finite-sample variances of dummy-variable estimates of the

fixed effects.27 This justifies the use of standard errors from dummy-variable estimates of the

one-stage regression specification as estimates of the asymptotic variance of the difference-in-

differences estimates. Conditional on the observed values of treatment status and the time-

varying controls, the asymptotic normality of the one-stage difference-in-difference estimate

(which is now seen to be a linear combination of the δ̂d) then follows from the asymptotic

normality of the δ̂d.

This discussion also motivates an alternative proof of the consistency of the one-stage

regression estimator. Since βi = λ1i − λ0i where E(λd) = E(Ȳ d
i ) − E(X̄d

i )′δd, a law of large

numbers and the continuous mapping theorem give28

26In the case of cohort fixed effects, this can also be expressed as
∑

j∈C w̄j β̂j + X̄1′ β̂x where w̄j is the
fraction of treated observations that correspond to cohort j and X̄1 is the vector of averages of the controls
(including time indicators) among all treated observations.

27For example, in the homoskedastic, non-autocorrelated case, the asymptotic and finite-sample variances
both equal σ2/T + x̄′jV ar(δ̂

d)x̄′j , where σ2 = V ar(εit|X).
28In the case of cohort fixed effects, w̄j = [

∑
i

∑
tDit1(Ti = j)]/(

∑
i

∑
tDit)

p−→ E[
∑

tDt1(Ti =

j)]/E(
∑

tDt) ≡ πj and X̄1 = (
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tDitXit)/(
∑

i

∑
tDit)

p−→ E(
∑

tDitXit)/E(
∑

tDit), so that β̂R =∑
j w̄j β̂j + X̄1β̂x −→

∑
j πjβj + E(

∑
tDitX

′
itβx)/E(

∑
tDit).
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)

= E(βit|Dit = 1).
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Tables

Table 1: Rejection rates from 1,000 simulations

Individual fixed effects

Random Fixed

N 50 100 500 50 100 500

2SDD D 0.074 0.059 0.05 0.08 0.053 0.051
D1 0.05 0.058 0.059 0.062
D2 0.068 0.058 0.075 0.043
D3 0.072 0.071 0.064 0.05
D4 0.099 0.071 0.095 0.074

1SDD D 0.092 0.085 0.066 0.098 0.087 0.077
D1 0.078 0.084 0.075 0.125
D2 0.058 0.063 0.079 0.056
D3 0.068 0.063 0.057 0.051
D4 0.095 0.07 0.083 0.104

Cohort fixed effects

Random Fixed

N 50 100 500 50 100 500

2SDD D 0.074 0.059 0.05 0.08 0.053 0.051
D1 0.05 0.058 0.047 0.059 0.062 0.063
D2 0.068 0.058 0.046 0.075 0.043 0.049
D3 0.072 0.071 0.047 0.064 0.05 0.05
D4 0.099 0.071 0.043 0.095 0.074 0.048

1SDD D 0.069 0.059 0.05 0.068 0.053 0.05
D1 0.051 0.058 0.047 0.056 0.058 0.064
D2 0.062 0.057 0.047 0.069 0.046 0.049
D3 0.066 0.069 0.047 0.061 0.049 0.05
D4 0.085 0.064 0.042 0.077 0.067 0.048

Manual D 0.069 0.059 0.05 0.068 0.053 0.05

Notes: “Random” denotes simulations in which all variables are re-drawn in every simulated
dataset; “Fixed” denotes simulations in which treatment status is drawn only once (so that
only εit is re-drawn in every simulated dataset). “2SDD” is two-stage differences in differences
and “1SDD” is robust one-stage difference in differences. “D” denotes the overall ATT and
“Dr” denotes the r-period ATT. “Manual” denotes estimates obtained by regressing outcomes
on unit and time fixed effects, controls, and interactions between treatment status and
those variables (without converting them to differences from treated means), then averaging
the estimated interaction terms, multiplied by their estimated coefficients, over all treated
observations (i.e., DitW̄

′
itρ̂1 in the notation of Section 3.1).
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Table 2: Simulations from individual-level and aggregate estimates

(1) (2) (3) (4)

2SDD 1.9997 2.2421 .0538 .2281
[0.034] [0.013] [0.068] [0.063]

2SDD, avg. X 1.9997 2.2421 .0539 .2282
[0.036] [0.011] [0.064] [0.061]

2SDD, avg. 1.9997 2.2421 .0539 .2282
[0.036] [0.011] [0.064] [0.061]

1SDD 1.9997 2.2421 .0538 .2281
[0.039] [0.076] [0.077] [0.074]

1SDD, avg. X 1.9997 2.2421 .0539 .2282
[0.046] [0.076] [0.073] [0.074]

1SDD, avg. 1.9997 2.2421 .0539 0.2282
[0.034] [0.064] [0.064] [0.065]

ATT 2.0 2.2424 .0542 0.2282

Notes: Average point estimates from 1,000 simulations, each corresponding to 500 individuals
organized into 50 states. All variables are re-drawn in every simulated dataset. In simulation
(1), Xit ∼ N(1, 1) and the treatment effect is independent of the covariate. In simulation
(2), Xit ∼ N(0, 1) and the treatment effect is βit = t − Ti + 1 + Xit/4. In simulation (3),
Xit ∼ N(λi/25, 1) and βit = (t − Ti + 1)Xit/4. In simulation (4), Xit ∼ N(Ti/6, 1) and
βit = (t − Ti + 1)Xit/4. “2SDD” refers to the standard two-stage difference-in-differences
estimate, “2SDD, avg. X” refers to 2SDD with X̄st in place of Xit, “2SDD, avg.” refers to
2SDD after aggregating all variables to the state×time level, “1SDD” refers to the standard
one-stage difference-in-differences estimate, “1SDD, avg. X” refers to the robust one-stage
estimator with state fixed effects and X̄st as a time-varying covariate, “1SDD, avg.” refers
to the standard one-stage estimator after aggregating all variables to the state×time level,
and “ATT” is the average overall ATT across all simulations. All estimates use cohort fixed
effects and are clustered on the state level.
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Table 3: One- and two-stage difference-in-difference estimates

One stage Two stage

(1) (2) (3) (4) (5) (6)

Overall ATT D 0.0706** 0.0706**
(0.0279) (0.0347)

Dynamic effects D1 0.0852*** 0.0811** 0.0852*** 0.0811**
(0.0267) (0.0397) (0.0291) (0.0406)

D2 0.0727** 0.0657 0.0727* 0.0657
(0.0304) (0.0401) (0.0386) (0.0454)

D3 0.0658* 0.0497 0.0658 0.0497
(0.0363) (0.0456) (0.0450) (0.0520)

D4 0.0373 0.0145 0.0373 0.0145
(0.0397) (0.0478) (0.0502) (0.0579)

D5 0.126*** 0.105** 0.126*** 0.105**
(0.0465) (0.0463) (0.0447) (0.0437)

Placebo effects D0 -0.000905 0.00841 -0.000905
(0.0360) (0.0181) (0.0378)

D−1 -0.0533 -0.0356** -0.0533
(0.0335) (0.0176) (0.0351)

D−2 -0.0165 0.00493 -0.0165
(0.0333) (0.0146) (0.0320)

D−3 -0.00194 0.0176 -0.00194
(0.0256) (0.0185) (0.0292)

D−4 -0.0174
(0.0201)

D−5 0.0263
(0.0169)

D−6 0.0464**
(0.0184)

D−7 -0.0605
(0.0369)

D−8 -0.153***
(0.0370)

D−9 -0.252***
(0.0268)

N 550 550 550 550 550 550

Notes: Columns (1) and (4) are 1SDD and 2SDD overall ATT estimates, respectively.
Columns (2) and (5) contain the 1SDD and 2SDD estimates of the dynamic post-treatment
effects (column (5) also contains the default 2SDD placebo tests of parallel trends. Columns
(3) and (6) contain 1SDD and 2SDD placebo tests of parallel trends that assume the treat-
ment begins four periods before its actual adoption (i.e., pretends that D = 1 if r ≥ −3), as
well as the post-treatment dynamic effects implied by this placebo assumption. All estimates
control for cohort×year-average police per capita, use cohort fixed effects, and cluster at the
state level.
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